Connections between Survey Calibration Estimators and Semiparametric Models for Incomplete Data
被引:66
|
作者:
Lumley, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Biostat, Seattle, WA 98195 USA
Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USAUniv Washington, Dept Biostat, Seattle, WA 98195 USA
Lumley, Thomas
[1
,2
]
Shaw, Pamela A.
论文数: 0引用数: 0
h-index: 0
机构:
NIAID, Biostat Res Branch, Bethesda, MD 20892 USAUniv Washington, Dept Biostat, Seattle, WA 98195 USA
Shaw, Pamela A.
[3
]
Dai, James Y.
论文数: 0引用数: 0
h-index: 0
机构:
Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USAUniv Washington, Dept Biostat, Seattle, WA 98195 USA
Dai, James Y.
[2
]
机构:
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[2] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA
[3] NIAID, Biostat Res Branch, Bethesda, MD 20892 USA
Survey calibration (or generalized raking) estimators are a standard approach to the use of auxiliary information in survey sampling, improving on the simple Horvitz-Thompson estimator. In this paper we relate the survey calibration estimators to the semiparametric incomplete-data estimators of Robins and coworkers, and to adjustment for baseline variables in a randomized trial. The development based on calibration estimators explains the "estimated weights" paradox and provides useful heuristics for constructing practical estimators. We present some examples of using calibration to gain precision without making additional modelling assumptions in a variety of regression models.