Connections between Survey Calibration Estimators and Semiparametric Models for Incomplete Data

被引:66
|
作者
Lumley, Thomas [1 ,2 ]
Shaw, Pamela A. [3 ]
Dai, James Y. [2 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[2] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA
[3] NIAID, Biostat Res Branch, Bethesda, MD 20892 USA
关键词
Regression; designed-based inference; causal inference; PROPORTIONAL HAZARDS MODELS; 2-PHASE STRATIFIED SAMPLES; RANDOMIZED CLINICAL-TRIALS; MEASUREMENT-ERROR; PARAMETERS; EFFICIENCY; COHORT; LIKELIHOOD; INFERENCE; DESIGN;
D O I
10.1111/j.1751-5823.2011.00138.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Survey calibration (or generalized raking) estimators are a standard approach to the use of auxiliary information in survey sampling, improving on the simple Horvitz-Thompson estimator. In this paper we relate the survey calibration estimators to the semiparametric incomplete-data estimators of Robins and coworkers, and to adjustment for baseline variables in a randomized trial. The development based on calibration estimators explains the "estimated weights" paradox and provides useful heuristics for constructing practical estimators. We present some examples of using calibration to gain precision without making additional modelling assumptions in a variety of regression models.
引用
收藏
页码:200 / 220
页数:21
相关论文
共 50 条