A Statistical Approach to Monitor Earth's Surface in Remote Sensing Applications

被引:2
|
作者
Zakeri, B. [1 ]
Kalantari, E. [1 ]
机构
[1] Babol Noshirvani Univ Technol, Fac Elect Engn, Babol Sar 4714871167, Iran
关键词
remote sensing; scattering problems; covariance matrix; imaging radars; estimation theory; ROUGH SURFACES; ELECTROMAGNETIC SCATTERING; MODEL; PARAMETERS;
D O I
10.1080/02726343.2012.633879
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In Earth's surface monitoring, the most significant signature of the target is the scattering mechanism, i.e., alpha-angle, whose evaluation requires special attention and solution. In these investigations, the alpha-angle possesses statistical features depending on the type of the scattering. There are several methods, such as target decomposition, eigenvector analysis, and the maximum likelihood estimator, to recognize the target in natural environments. In this article, the combination of target decomposition and maximum likelihood estimator is addressed as a new algorithm to investigate radar targets. It will be demonstrated that several probability density functions, such as Rayleigh, normal, gamma, and binomial, can be used to estimate the alpha-angle. To validate analytical results, polarimetric synthetic aperture radar (PolSAR) data, provided by the European Space Agency, are investigated. The consequences justify the potential of the proposed algorithm.
引用
收藏
页码:37 / 49
页数:13
相关论文
共 50 条
  • [1] Orbital remote sensing of the earth's surface: A review
    Lowman, PD
    29TH APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, PROCEEDINGS, 2000, : 11 - 11
  • [2] Remote Sensing of the Earth’s Surface Using GPS Signals
    G. V. Golubkov
    M. I. Manzhelii
    A. A. Berlin
    N. N. Bezuglov
    A. N. Klyucharev
    O. P. Borchevkina
    S. O. Adamson
    Yu. A. Dyakov
    I. V. Karpov
    I. I. Morozov
    L. V. Eppelbaum
    M. G. Golubkov
    Russian Journal of Physical Chemistry B, 2021, 15 : 362 - 365
  • [3] Remote Sensing of the Earth's Surface Using GPS Signals
    Golubkov, G. V.
    Manzhelii, M. I.
    Berlin, A. A.
    Bezuglov, N. N.
    Klyucharev, A. N.
    Borchevkina, O. P.
    Adamson, S. O.
    Dyakov, Yu. A.
    Karpov, I. V.
    Morozov, I. I.
    Eppelbaum, L. V.
    Golubkov, M. G.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 15 (02) : 362 - 365
  • [5] Multiresolution Earth Remote Sensing Approach
    Bostater, Charles R., Jr.
    REMOTE SENSING OF THE OCEAN, SEA ICE, COASTAL WATERS, AND LARGE WATER REGIONS 2018, 2018, 10784
  • [6] Thermal remote sensing for earth science applications
    Franzsen, Alan J.
    Proceedings of the South African Symposium on Communications and Signal Processing, COMSIG, 1998, : 351 - 352
  • [7] Thermal remote sensing for earth science applications
    Franzsen, AJ
    PROCEEDINGS OF THE 1998 SOUTH AFRICAN SYMPOSIUM ON COMMUNICATIONS AND SIGNAL PROCESSING: COMSIG '98, 1998, : 351 - 352
  • [8] On some applications of statistical methods in remote sensing
    Deekshatulu, B. L.
    Subhadra, P.
    Sasikala, K. R.
    Padmapriya, K. V. N.
    IMA Journal of Mathematics Applied in Medicine & Biology, 12 (3-4):
  • [9] Statistical characteristics of soil in remote sensing applications
    Kulemin, G.P.
    Kirichenko, V.A.
    Logvinov, Yu.F.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 2006, 65 (01): : 19 - 28
  • [10] An operational approach to monitor vegetation using remote sensing
    Bouzidi, S
    Berroir, JP
    Herlin, I
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2697 - 2700