Rare Earth Single-Atom Catalysts for Nitrogen and Carbon Dioxide Reduction

被引:263
|
作者
Liu, Jieyuan [1 ]
Kong, Xue [1 ]
Zheng, Lirong [2 ]
Guo, Xu [1 ]
Liu, Xiaofang [1 ]
Shui, Jianglan [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
single-atom catalysts; rare earth; yttrium; scandium; nitrogen reduction reaction; N-C ELECTROCATALYST; PERFORMANCE; SC; ELECTROREDUCTION; STABILITY; SURFACE; SITES; 3D;
D O I
10.1021/acsnano.9b08835
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-atom catalysts (SACs) have attracted much attention owning to their high catalytic properties. Herein, yttrium and scandium rare earth SACs are successfully synthesized on a carbon support (Y-1/NC and Sc-1/NC). Different from the well-known M-N-4 structure of M-N-C (M = Fe, Co) catalysts, Sc and Y atoms with a large atomic radius tend to be anchored to the large-sized carbon defects through six coordination bonds of nitrogen and carbon. Although Y- and Sc-based nanomaterials are generally inactive to room-temperature electrochemical reactions, Y-1/NC and Sc-1/NC SACs exhibit catalytic activities to nitrogen reduction reaction and carbon dioxide reduction reaction due to the modulation of the local electronic structure of Y/Sc single atoms by N and C coordination. The catalytic functions of rare earth single atoms not only demonstrate the magical effect of SACs but also promote the application of rare earth catalysts in room-temperature electrochemical reactions.
引用
收藏
页码:1093 / 1101
页数:9
相关论文
共 50 条
  • [1] Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide
    Tao, Yu
    Ou, Honghui
    Lei, Yongpeng
    Xiong, Yu
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (05):
  • [2] Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates
    Gandionco, Karl Adrian
    Kim, Juwon
    Bekaert, Lieven
    Hubin, Annick
    Lim, Jongwoo
    CARBON ENERGY, 2024, 6 (03)
  • [3] Recent progress in electrochemical reduction of carbon dioxide on metal single-atom catalysts
    Huo, Siming
    Lu, Jessie
    Wang, Xianqin
    Energy Science and Engineering, 2022, 10 (05): : 1584 - 1600
  • [4] Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction
    Charles E. Creissen
    Marc Fontecave
    Nature Communications, 13
  • [5] Neighboring effect in single-atom catalysts for the electrochemical carbon dioxide reduction reaction
    Wong, Hon Ho
    Sun, Mingzi
    Wu, Tong
    Chan, Cheuk Hei
    Lu, Lu
    Lu, Qiuyang
    Chen, Baian
    Huang, Bolong
    ESCIENCE, 2024, 4 (01):
  • [6] Recent progress in electrochemical reduction of carbon dioxide on metal single-atom catalysts
    Huo, Siming
    Lu, Jessie
    Wang, Xianqin
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (05) : 1584 - 1600
  • [7] Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction
    Creissen, Charles E.
    Fontecave, Marc
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [8] When nitrogen reduction meets single-atom catalysts
    Pang, Yingping
    Su, Chao
    Xu, Liqiang
    Shao, Zongping
    PROGRESS IN MATERIALS SCIENCE, 2023, 132
  • [9] Liquid Nitrogen Sources Assisting Gram-Scale Production of Single-Atom Catalysts for Electrochemical Carbon Dioxide Reduction
    An, Beibei
    Zhou, Jingsheng
    Duan, Liangjing
    Liu, Xiao
    Yu, Guanyao
    Ren, Tiegang
    Guo, Xugeng
    Li, Yuanyuan
    Agren, Hans
    Wang, Li
    Zhang, Jinglai
    ADVANCED SCIENCE, 2023, 10 (11)
  • [10] Electrocatalytic Nitrogen Reduction by Transition Metal Single-Atom Catalysts on Polymeric Carbon Nitride
    Zheng, Mei
    Xu, Hongbin
    Li, Yi
    Ding, Kaining
    Zhang, Yongfan
    Sun, Chenghua
    Chen, Wenkai
    Lin, Wei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (25): : 13880 - 13888