Non-asymptotic sub-Gaussian error bounds for hypothesis testing

被引:0
|
作者
Li, Yanpeng [1 ]
Tian, Boping [1 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
关键词
Pinskers bound; KL divergence; Sub-Gaussian; Fanos inequality;
D O I
10.1016/j.spl.2022.109586
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Using the sub-Gaussian norm of the Bernoulli random variable, this paper presents the explicit and informative error lower bounds for binary and multiple hypothesis testing in terms of the KL divergence non-asymptotically. Some numerical comparisons are also demonstrated. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Sub-Gaussian Error Bounds for Hypothesis Testing
    Wang, Yan
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 3050 - 3055
  • [2] A Refined Non-Asymptotic Tail Bound of Sub-Gaussian Matrix
    Xianjie GAO
    Chao ZHANG
    Hongwei ZHANG
    Journal of Mathematical Research with Applications, 2020, 40 (05) : 543 - 550
  • [3] Non-Asymptotic Error Bounds for Bidirectional GANs
    Liu, Shiao
    Yang, Yunfei
    Huang, Jian
    Jiao, Yuling
    Wang, Yang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] Statistical Classification via Robust Hypothesis Testing: Non-Asymptotic and Simple Bounds
    Afser, Huseyin
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 2112 - 2116
  • [5] Statistical Classification via Robust Hypothesis Testing: Non-Asymptotic and Simple Bounds
    Afser, Huseyin
    IEEE Signal Processing Letters, 2021, 28 : 2112 - 2116
  • [6] Non-asymptotic bounds for autoregressive approximation
    Goldenshluger, A
    Zeevi, A
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 304 - 304
  • [7] NON-ASYMPTOTIC PERFORMANCE BOUNDS OF EIGENVALUE BASED DETECTION OF SIGNALS IN NON-GAUSSIAN NOISE
    Heimann, Ron
    Leshem, Amir
    Zehavi, Ephraim
    Weiss, Anthony J.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2936 - 2940
  • [8] Optimal Non-Asymptotic Bounds for the Sparse β Model
    Yang, Xiaowei
    Pan, Lu
    Cheng, Kun
    Liu, Chao
    MATHEMATICS, 2023, 11 (22)
  • [9] Non-asymptotic error bounds for constant stepsize stochastic approximation for tracking mobile agents
    Kumar, Bhumesh
    Borkar, Vivek
    Shetty, Akhil
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2019, 31 (04) : 589 - 614
  • [10] Non-asymptotic error bounds for constant stepsize stochastic approximation for tracking mobile agents
    Bhumesh Kumar
    Vivek Borkar
    Akhil Shetty
    Mathematics of Control, Signals, and Systems, 2019, 31 : 589 - 614