A lower bound for the vertex boundary-width of complete k-ary trees

被引:3
|
作者
Otachi, Yota [1 ]
Yamazaki, Koichi [1 ]
机构
[1] Gunma Univ, Dept Comp Sci, Gunma 3768515, Japan
关键词
vertex boundary-width; vertex isoperimetric; complete k-ary tree;
D O I
10.1016/j.disc.2007.05.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The vertex boundary-width problem (for short VBWP) is to determine the value of vbw(G) = max(1 <= l <= vertical bar V vertical bar) min (S subset of V,vertical bar S vertical bar=l)vertical bar N(S)vertical bar for a given graph G = (V, E), where N(S) = {upsilon is not an element of S vertical bar upsilon is a neighbor of u for some u is an element of S}. In this paper, we give a lower bound for vertex boundary-width of complete k-ary trees. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2389 / 2395
页数:7
相关论文
共 50 条
  • [1] Antibandwidth of complete k-ary trees
    Calamoneri, Tiziana
    Massini, Annalisa
    Toeroek, L'ubomir
    Vrt'o, Imrich
    DISCRETE MATHEMATICS, 2009, 309 (22) : 6408 - 6414
  • [2] Antimagic orientations for the complete k-ary trees
    Song, Chen
    Hao, Rong-Xia
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (04) : 1077 - 1085
  • [3] EMBEDDING K-ARY COMPLETE TREES INTO HYPERCUBES
    SHEN, XJ
    HU, Q
    LIANG, WF
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1995, 24 (01) : 100 - 106
  • [4] Antimagic orientations for the complete k-ary trees
    Chen Song
    Rong-Xia Hao
    Journal of Combinatorial Optimization, 2019, 38 : 1077 - 1085
  • [5] Complete k-ary trees and Hamming graphs
    Choudum, S. A.
    Lavanya, S.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2009, 45 : 15 - 24
  • [6] Line-broadcasting in complete k-ary trees
    Shabtai, Revital Hollander
    Roditty, Yehuda
    NETWORKS, 2016, 67 (02) : 139 - 147
  • [7] Embedding of k-ary complete trees into hypercubes with uniform load
    Trdlicka, J
    Tvrdik, P
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1998, 52 (02) : 120 - 131
  • [8] ON FIBONACCI K-ARY TREES
    CHANG, DK
    FIBONACCI QUARTERLY, 1986, 24 (03): : 258 - 262
  • [9] Embedding of k-ary complete trees into hypercubes with optimal load
    Trdlicka, J
    Tvrdik, P
    EIGHTH IEEE SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING, PROCEEDINGS, 1996, : 600 - 607
  • [10] GENERATION AND RANKING OF K-ARY TREES
    ZAKS, S
    INFORMATION PROCESSING LETTERS, 1982, 14 (01) : 44 - 48