Fine-Scale Surface Normal Estimation Using a Single NIR Image

被引:6
|
作者
Yoon, Youngjin [1 ]
Choe, Gyeongmin [1 ]
Kim, Namil [1 ]
Lee, Joon-Young [2 ]
Kweon, In So [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon, South Korea
[2] Adobe Res, San Jose, CA USA
来源
COMPUTER VISION - ECCV 2016, PT III | 2016年 / 9907卷
关键词
Shape from shading; Near infrared image; Generative adversarial network; SHAPE;
D O I
10.1007/978-3-319-46487-9_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present surface normal estimation using a single near infrared (NIR) image. We are focusing on reconstructing fine-scale surface geometry using an image captured with an uncalibrated light source. To tackle this ill-posed problem, we adopt a generative adversarial network, which is effective in recovering sharp outputs essential for fine-scale surface normal estimation. We incorporate the angular error and an integrability constraint into the objective function of the network to make the estimated normals incorporate physical characteristics. We train and validate our network on a recent NIR dataset, and also evaluate the generality of our trained model by using new external datasets that are captured with a different camera under different environments.
引用
收藏
页码:486 / 500
页数:15
相关论文
共 50 条
  • [1] Simultaneous Estimation of Near IR BRDF and Fine-Scale Surface Geometry
    Choe, Gyeongmin
    Narasimhan, Srinivasa G.
    Kweon, In So
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2452 - 2460
  • [2] Modeling fine-scale soil surface structure using geostatistics
    Croft, H.
    Anderson, K.
    Brazier, R. E.
    Kuhn, N. J.
    WATER RESOURCES RESEARCH, 2013, 49 (04) : 1858 - 1870
  • [3] Estimation of Fine-Scale Histologic Features at Low Magnification
    Zarella, Mark D.
    Quaschnick, Matthew R.
    Breen, David E.
    Garcia, Fernando U.
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2018, 142 (11) : 1394 - 1402
  • [4] Censored rainfall modelling for estimation of fine-scale extremes
    Cross, David
    Onof, Christian
    Winter, Hugo
    Bernardara, Pietro
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2018, 22 (01) : 727 - 756
  • [5] Predicting surface porosity using a fine-scale index of roughness in a cultivated field
    Sun, Y.
    Lin, J.
    Lammers, P. Schulze
    Damerow, L.
    Hueging, H.
    Zhang, H.
    Sun, W.
    SOIL & TILLAGE RESEARCH, 2009, 103 (01): : 57 - 64
  • [6] USING LINKAGE DISEQUILIBRIUM FOR FINE-SCALE MAPPING
    DEVLIN, B
    RISCH, N
    AMERICAN JOURNAL OF HUMAN GENETICS, 1995, 57 (04) : 69 - 69
  • [7] Estimation of Fine-Scale Daily Temperature with 30 m-Resolution Using PRISM
    Ahn, Joong-Bae
    Hur, Jina
    Lim, A-Young
    ATMOSPHERE-KOREA, 2014, 24 (01): : 101 - 110
  • [8] Fine-scale estimation of effective reproduction numbers for dengue surveillance
    Ong, Janet
    Soh, Stacy
    Ho, Soon Hoe
    Seah, Annabel
    Dickens, Borame Sue
    Tan, Ken Wei
    Koo, Joel Ruihan
    Cook, Alex R.
    Richards, Daniel R.
    Gaw, Leon Yan-Feng
    Ng, Lee Ching
    Lim, Jue Tao
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (01)
  • [9] Fine-Scale SAR Soil Moisture Estimation in the Subarctic Tundra
    Zwieback, Simon
    Berg, Aaron A.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4898 - 4912
  • [10] Using object-based image analysis to determine seafloor fine-scale features and complexity
    Lacharite, Myriam
    Metaxas, Anna
    Lawton, Peter
    LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2015, 13 (10): : 553 - 567