Deterministic blow-ups of minimal nondeterministic finite automata over a fixed alphabet

被引:4
|
作者
Jirasek, Jozef [2 ]
Jiraskova, Galina [1 ]
Szabari, Alexander [2 ]
机构
[1] Slovak Acad Sci, Inst Math, Kosice 04001, Slovakia
[2] Safarik Univ, Inst Comp Sci, Kosice 04154, Slovakia
关键词
deterministic and nondeterministic finite automata; minimal automata;
D O I
10.1142/S0129054108005851
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that for all integers n and a such that n <= alpha a <= 2(n), there exists a minimal nondeterministic finite automaton of n states with a four-letter input alphabet whose equivalent minimal deterministic finite automaton has exactly a states. It follows that in the case of a four-letter alphabet, there are no "magic numbers", i.e., the holes in the hierarchy. This improves a similar result obtained by Geffert for a growing alphabet of size n + 2.
引用
收藏
页码:617 / 631
页数:15
相关论文
共 49 条
  • [1] Deterministic blow-ups of minimal nondeterministic finite automata over a fixed alphabet
    Jirasek, Jozef
    Jiraskova, Calina
    Szabari, Alexander
    DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2007, 4588 : 254 - +
  • [2] Deterministic blow-ups of minimal NFA's
    Jiraskova, Galina
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2006, 40 (03): : 485 - 499
  • [3] Autoequivalences of blow-ups of minimal surfaces
    Hu, Xianyu
    Krah, Johannes
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024,
  • [4] ON THE FINITE GENERATION OF SYMBOLIC BLOW-UPS
    HUNEKE, C
    MATHEMATISCHE ZEITSCHRIFT, 1982, 179 (04) : 465 - 472
  • [5] Blow-ups of minimal surfaces in the Heisenberg group
    Yu, Yonghao
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2025, 13 (01):
  • [6] More on deterministic and nondeterministic finite cover automata
    Gruber, Hermann
    Holzer, Markus
    Jakobi, Sebastian
    THEORETICAL COMPUTER SCIENCE, 2017, 679 : 18 - 30
  • [7] On input-revolving deterministic and nondeterministic finite automata
    Bensch, Suna
    Bordihn, Henning
    Holzer, Markus
    Kutrib, Martin
    INFORMATION AND COMPUTATION, 2009, 207 (11) : 1140 - 1155
  • [8] Minimal Reversible Deterministic Finite Automata
    Holzer, Markus
    Jakobi, Sebastian
    Kutrib, Martin
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2018, 29 (02) : 251 - 270
  • [9] Algorithmic Formal Proof of Equivalence of Nondeterministic and Deterministic Finite Automata
    Zafar, Nazir Ahmad
    Shah, Syed Hasnain Haider
    ICECT: 2009 INTERNATIONAL CONFERENCE ON ELECTRONIC COMPUTER TECHNOLOGY, PROCEEDINGS, 2009, : 108 - +
  • [10] Minimal Reversible Deterministic Finite Automata
    Holzer, Markus
    Jakobi, Sebastian
    Kutrib, Martin
    DEVELOPMENTS IN LANGUAGE THEORY (DLT 2015), 2015, 9168 : 276 - 287