Bifurcation and Stability for the Unstirred Chemostat Model with Beddington-DeAngelis Functional Response

被引:4
|
作者
Li, Shanbing [1 ]
Wu, Jianhua [1 ]
Dong, Yaying [2 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
[2] Northwest Univ Xian, Sch Math, Xian 710069, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2016年 / 20卷 / 04期
关键词
Chemostat; Double eigenvalue; Bifurcation; Stability; HOMOGENEOUS DIRICHLET CONDITIONS; REACTION-DIFFUSION EQUATIONS; MATHEMATICAL-MODEL; STEADY-STATES; COMPETITION; COEXISTENCE; INHIBITOR; SYSTEM; EIGENVALUE;
D O I
10.11650/tjm.20.2016.5482
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a basic N-dimensional competition model in the unstirred chemostat with Beddington-DeAngelis functional response. The bifurcation solutions from a simple eigenvalue and a double eigenvalue are obtained respectively. In particular, for the double eigenvalue, we establish the existence and stability of coexistence solutions by the techniques of space decomposition and Lyapunov-Schmidt procedure. Moreover, we describe the global structure of these bifurcation solutions.
引用
收藏
页码:849 / 870
页数:22
相关论文
共 50 条