An exactly solvable model of the Calogero type for the icosahedral group

被引:11
|
作者
Haschke, O [1 ]
Rühl, W [1 ]
机构
[1] Univ Kaiserslautern, Dept Phys, D-67653 Kaiserslautern, Germany
关键词
D O I
10.1142/S0217732398003314
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct a quantum mechanical model of the Calogero type for the icosahedral group as the structural group. Exact solvability is proved and the spectrum is derived explicitly.
引用
收藏
页码:3109 / 3121
页数:13
相关论文
共 50 条
  • [1] An exactly solvable Calogero model for a non-integrally laced group
    Twarock, R
    PHYSICS LETTERS A, 2000, 275 (03) : 169 - 172
  • [2] Exactly solvable dynamical systems in the neighborhood of the Calogero model
    Haschke, O
    Rühl, W
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (03): : 387 - 408
  • [3] On an exactly solvable BN type Calogero model with non-Hermitian PT invariant interaction
    Basu-Mallick, B
    Mandal, BP
    PHYSICS LETTERS A, 2001, 284 (06) : 231 - 237
  • [4] Exactly solvable potentials of Calogero type for q-deformed Coxeter groups
    Fring, A
    Korff, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (45): : 10931 - 10949
  • [5] Quasi exactly solvable extension of Calogero model associated with exceptional orthogonal polynomials
    Basu-Mallick, B.
    Mandal, Bhabani Prasad
    Roy, Pinaki
    ANNALS OF PHYSICS, 2017, 380 : 206 - 212
  • [6] Exactly solvable three-body Calogero-type model with translucent two-body barriers
    Znojil, M
    Tater, M
    PHYSICS LETTERS A, 2001, 284 (06) : 225 - 230
  • [7] Quasi-Exactly Solvable Generalizations of Calogero–Sutherland Models
    D. Gómez-Ullate
    A. González-López
    M. A. Rodríguez
    Theoretical and Mathematical Physics, 2001, 127 : 719 - 728
  • [8] An exactly solvable quantum-metamaterial type model
    Sowa, A. P.
    Zagoskin, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (39)
  • [9] Quasi-exactly solvable generalizations of Calogero-Sutherland models
    Gómez-Ullate, D
    González-López, A
    Rodríguez, MA
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 719 - 728
  • [10] Renormalisation group flow in an exactly solvable model with fluctuating geometry
    Ambjorn, J
    Bialas, P
    Jurkiewicz, J
    PHYSICS LETTERS B, 1996, 379 (1-4) : 93 - 98