Penalized least squares;
Tuning parameter;
Extrapolation;
Generalized cross-validation;
REGULARIZATION;
D O I:
10.1016/j.cam.2019.112416
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The specification of accurate ridge estimates in penalized regression models strongly depends on the appropriate choice of the tuning parameter which monitors the regularization process. In this work, we propose the selection of this parameter via the minimization of an extrapolation estimate of the generalized cross-validation function. The efficiency of the estimate is characterized by an appropriately defined index of proximity; in case that its value approaches one, the estimation becomes optimal. We consider regression models with highly correlated covariates and prove that the probability of the index of proximity being close to one is high. This result is confirmed through several simulation tests. (C) 2019 Elsevier B.V. All rights reserved.
机构:
Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USAUniv N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
Jiang, Jiancheng
Fan, Yingying
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Informat & Operat Management Dept, Marshall Sch Business, Los Angeles, CA 90089 USAUniv N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
Fan, Yingying
Fan, Jianqing
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USAUniv N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
Fan, Jianqing
ANNALS OF STATISTICS,
2010,
38
(03):
: 1403
-
1432
机构:
Shenzhen Technol Univ, Coll Big Data & Internet, Shenzhen, Peoples R ChinaShenzhen Technol Univ, Coll Big Data & Internet, Shenzhen, Peoples R China
Cao, Zhiqiang
Wong, Man Yu
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R ChinaShenzhen Technol Univ, Coll Big Data & Internet, Shenzhen, Peoples R China
Wong, Man Yu
Cheng, Garvin H. L.
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R ChinaShenzhen Technol Univ, Coll Big Data & Internet, Shenzhen, Peoples R China