Bounds on graph eigenvalues II

被引:133
|
作者
Nikiforov, Vladimir [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
clique number; spectral radius; Turan graph; maximum degree; books; SPECTRAL-RADIUS;
D O I
10.1016/j.laa.2007.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove three results about the spectral radius mu(G) of a graph G: (a) Let T-r (n) be the r-partite Turan graph of order n. If G is a Kr+ 1 -free graph of order n, then mu(G) < mu(T-r(n)) unless G = T-r(n). (b) For most irregular graphs G of order n and size m, mu(G) - 2m/n > 1/(2m + 2n). (c) Let 0 <= k <= l. If G is a graph of order n with no K-2 + (K) over bar (k+1) and no K-2,K-l+1, then mu(G) <= min { Delta(G), (k - l + 1 + root(k - 1 + 1)(2) + 4l (n - 1) / 2 }. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 50 条
  • [1] BOUNDS FOR EIGENVALUES OF A GRAPH
    Kumar, Ravinder
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2010, 4 (03): : 399 - 404
  • [2] BOUNDS OF EIGENVALUES OF A GRAPH
    洪渊
    Acta Mathematicae Applicatae Sinica(English Series), 1988, (02) : 165 - 168
  • [3] BOUNDS ON GRAPH EIGENVALUES
    POWERS, DL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 117 : 1 - 6
  • [4] BOUNDS FOR LAPLACIAN GRAPH EIGENVALUES
    Maden, A. Dilek
    Buyukkose, Serife
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 529 - 536
  • [5] Bounds on graph eigenvalues I
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 667 - 671
  • [6] Upper bounds for the Laplacian graph eigenvalues
    Li, JS
    Pan, YL
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (05) : 803 - 806
  • [7] Lower bounds of the Laplacian graph eigenvalues
    Torgasev, A
    Petrovic, M
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (04): : 589 - 593
  • [8] Bounds of eigenvalues of a nontrivial bipartite graph
    Lai, Hong-Jian
    Liu, Bolian
    Zhou, Ju
    ARS COMBINATORIA, 2014, 113 : 341 - 351
  • [9] Bounds for eigenvalues of the adjacency matrix of a graph
    Bhunia, Pintu
    Bag, Santanu
    Paul, Kallol
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (04) : 415 - 432
  • [10] Bounds for the Generalized Distance Eigenvalues of a Graph
    Alhevaz, Abdollah
    Baghipur, Maryam
    Ganie, Hilal Ahmad
    Shang, Yilun
    SYMMETRY-BASEL, 2019, 11 (12):