Input load identification of nonlinear tower structural system using intelligent inverse estimation algorithm

被引:4
|
作者
Lee, Ming-Hui [1 ]
Liu, Ying-Wei [2 ]
机构
[1] Chinese Mil Acad, Dept Civil Engn, Kaohsiung, Taiwan
[2] Natl Pingtung Univ Sci & Technol, Dept Civil Engn, Pingtung, Taiwan
关键词
inverse estimation; extended Kalman filter; least squares; FORCE VIBRATION PROBLEM;
D O I
10.1016/j.proeng.2014.06.377
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
An extended inverse estimation algorithm was developed to effectively estimate the unknown input load in nonlinear structural systems. This algorithm combines the extended Kalman filter and intelligent recursive least squares estimator. This study investigated the unknown input load applied on a tower structural system. Nonlinear characteristics will exist in various structural systems. The nonlinear characteristics are particularly more obvious when applying a larger input load. Numerical simulation cases involving different input load types are studied in this paper. The simulation results verify the nonlinear characteristics of the structural system. This algorithm is effective in estimating unknown input loads. (C) 2014 Elsevier Ltd.
引用
收藏
页码:540 / 549
页数:10
相关论文
共 50 条
  • [1] Nonlinear structural system wind load input estimation using the extended inverse method
    Lee, Ming-Hui
    WIND AND STRUCTURES, 2013, 17 (04) : 451 - 464
  • [2] Parameter estimation for nonlinear system using intelligent algorithm
    Xu, Xiaoping
    Wang, Feng
    Qian, Fucai
    Computer Modelling and New Technologies, 2014, 18 (12): : 367 - 371
  • [3] Input force estimation using an inverse structural filter
    Steltzner, AD
    Kammer, DC
    IMAC - PROCEEDINGS OF THE 17TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I AND II, 1999, 3727 : 954 - 960
  • [4] Input force estimation using an inverse structural filter
    Steltzner, A.D.
    Kammer, D.C.
    2000, Sage Sci Press, Thousand Oaks, CA, United States (32):
  • [5] An Analysis of Input Inverse System Identification Path Dynamics Estimation
    Engel, Steven
    Sanyaolu, Oluwatimilehin
    Bram, Blair
    Maguire, Daniel J.
    2024 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY, EIT 2024, 2024, : 705 - 709
  • [6] Nonlinear Model Identification Using Intelligent Hybrid Algorithm
    Guo, Jian
    Zhou, Cheng
    Guo, Xuan
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 6: MODELLING & SIMULATION INDUSTRIAL ENGINEERING & MANAGEMENT, 2010, : 401 - 404
  • [7] Structural identification using inverse system dynamics
    Kammer, DC
    Steltzner, AD
    IMAC - PROCEEDINGS OF THE 17TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I AND II, 1999, 3727 : 1880 - 1886
  • [8] Structural identification using inverse system dynamics
    Kammer, DC
    Steltzner, AD
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2000, 23 (05) : 819 - 825
  • [9] AN INTELLIGENT NONLINEAR SYSTEM IDENTIFICATION METHOD WITH ROBUST STATE ESTIMATION
    Kolodziej, Jason R.
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE AND BATH/ASME SYMPOSIUM ON FLUID POWER AND MOTION CONTROL (DSCC 2011), VOL 1, 2012, : 361 - 367
  • [10] IMM algorithm using intelligent input estimation for maneuvering target tracking
    Lee, BJ
    Park, JB
    Joo, YH
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2005, E88A (05): : 1320 - 1327