Magnetotransport in heterostructures of transition metal dichalcogenides and graphene

被引:56
|
作者
Voelkl, Tobias [1 ]
Rockinger, Tobias [1 ]
Drienovsky, Martin [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [2 ]
Weiss, Dieter [1 ]
Eroms, Jonathan [1 ]
机构
[1] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany
[2] NIMS, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
关键词
SPIN;
D O I
10.1103/PhysRevB.96.125405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We use a van der Waals pickup technique to fabricate different heterostructures containing WSe2(WS2) and graphene. The heterostructures were structured by plasma etching, contacted by one-dimensional edge contacts, and a top gate was deposited. For graphene/WSe2/SiO2 samples we observe mobilities of similar to 12 000 cm(2) V-1 s(-1). Magnetic-field-dependent resistance measurements on these samples show a peak in the conductivity at low magnetic fields. This dip is attributed to the weak antilocalization (WAL) effect, stemming from spin-orbit coupling. Samples where graphene is encapsulated between WSe2(WS2) and hexagonal boron nitride show a much higher mobility of up to similar to 120 000 cm(2) V-1 s(-1). However, in these samples noWAL peak can be observed. We attribute this to a transition from the diffusive to the quasiballistic regime. At low magnetic fields a resistance peak appears, which we ascribe to a size effect due to boundary scattering. Shubnikov-de Haas oscillations in fully encapsulated samples show all integer filling factors due to complete lifting of the spin and valley degeneracies.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Heterostructures of transition metal dichalcogenides
    Amin, B.
    Singh, N.
    Schwingenschloegl, U.
    PHYSICAL REVIEW B, 2015, 92 (07)
  • [2] Freestanding van der Waals Heterostructures of Graphene and Transition Metal Dichalcogenides
    Azizi, Amin
    Eichfeld, Sarah
    Geschwind, Gayle
    Zhang, Kehao
    Jiang, Bin
    Mukherjee, Debangshu
    Hossain, Lorraine
    Piasecki, Aleksander F.
    Kabius, Bernd
    Robinson, Joshua A.
    Alem, Nasim
    ACS NANO, 2015, 9 (05) : 4882 - 4890
  • [3] Transition Metal Dichalcogenides Heterostructures Nanoribbons
    Ding, Yu
    Wang, Xiaozheng
    Xu, Qiongyi
    Xiong, Zeyou
    Wang, Huiliu
    Yu, Yantao
    Zhang, Tianzhu
    Zhang, Shunping
    Zeng, Mengqi
    Fu, Lei
    ACS MATERIALS LETTERS, 2023, 5 (07): : 1781 - 1786
  • [4] Synthesis of transition metal dichalcogenides and their heterostructures
    Cai, Yuhang
    Xu, Kai
    Zhu, Wenjuan
    MATERIALS RESEARCH EXPRESS, 2018, 5 (09)
  • [5] Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene
    Iyikanat, F.
    Sahin, H.
    Senger, R. T.
    Peeters, F. M.
    APL MATERIALS, 2014, 2 (09):
  • [6] Interlayer interactions in transition metal dichalcogenides heterostructures
    Li W.
    Yang Z.
    Sun M.
    Dong J.
    Reviews in Physics, 2022, 9
  • [7] Optoelectronics of Multijunction Heterostructures of Transition Metal Dichalcogenides
    Choi, Woosuk
    Akhtar, Imtisal
    Kang, Dongwoon
    Lee, Yeon-Jae
    Jung, Jongwan
    Kim, Yeon Ho
    Lee, Chul-Ho
    Hwang, David J.
    Seo, Yongho
    NANO LETTERS, 2020, 20 (03) : 1934 - 1943
  • [8] Lateral and Vertical Heterostructures of Transition Metal Dichalcogenides
    Aras, Mehmet
    Kilic, Cetin
    Ciraci, S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (03): : 1547 - 1555
  • [9] Harmonic generation in transition metal dichalcogenides and their heterostructures
    Ma, Rui
    Sutherland, Duncan S.
    Shi, Yumeng
    MATERIALS TODAY, 2021, 50 : 570 - 586
  • [10] Longitudinal optical conductivity of graphene in van der Waals heterostructures composed of graphene and transition metal dichalcogenides
    Cui, Ruoyang
    Li, Yaojin
    PHYSICS LETTERS A, 2024, 495