Zero-shot Event Extraction via Transfer Learning: Challenges and Insights

被引:0
|
作者
Lyu, Qing [1 ]
Zhang, Hongming [2 ,3 ]
Sulem, Elior [1 ]
Roth, Dan [1 ]
机构
[1] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[2] HKUST, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[3] Univ Penn, Philadelphia, PA 19104 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Event extraction has long been a challenging task, addressed mostly with supervised methods that require expensive annotation and are not extensible to new event ontologies. In this work, we explore the possibility of zeroshot event extraction by formulating it as a set of Textual Entailment (TE) and/or Question Answering (QA) queries (e.g. "A city was attacked" entails "There is an attack"), exploiting pretrained TE/QA models for direct transfer. On ACE-2005 and ERE, our system achieves acceptable results, yet there is still a large gap from supervised approaches, showing that current QA and TE technologies fail in transferring to a different domain. To investigate the reasons behind the gap, we analyze the remaining key challenges, their respective impact, and possible improvement directions(1).
引用
收藏
页码:322 / 332
页数:11
相关论文
共 50 条
  • [1] Zero-Shot Transfer Learning for Event Extraction
    Huang, Lifu
    Ji, Heng
    Cho, Kyunghyun
    Dagan, Ido
    Riedel, Sebastian
    Voss, Clare R.
    PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, 2018, : 2160 - 2170
  • [2] Zero-shot learning via discriminative representation extraction
    Long, Teng
    Xu, Xing
    Shen, Fumin
    Liu, Li
    Xie, Ning
    Yang, Yang
    PATTERN RECOGNITION LETTERS, 2018, 109 : 27 - 34
  • [3] Zero-shot Learning via Recurrent Knowledge Transfer
    Zhao, Bo
    Sun, Xinwei
    Hong, Xiaopeng
    Yao, Yuan
    Wang, Yizhou
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 1308 - 1317
  • [4] Robust Zero-Shot Intent Detection via Contrastive Transfer Learning
    Maqbool, M. H.
    Khan, F. A.
    Siddique, A. B.
    Foroosh, Hassan
    2023 IEEE 17TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, ICSC, 2023, : 49 - 56
  • [5] Zero-Shot Transfer Learning of a Throwing Task via Domain Randomization
    Park, Sungyong
    Kim, Jigang
    Kim, H. Jin
    2020 20TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2020, : 1026 - 1030
  • [6] Relational Knowledge Transfer for Zero-Shot Learning
    Wang, Donghui
    Li, Yanan
    Lin, Yuetan
    Zhuang, Yueting
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2145 - 2151
  • [7] Hypernetworks for Zero-Shot Transfer in Reinforcement Learning
    Rezaei-Shoshtari, Sahand
    Morissette, Charlotte
    Hogan, Francois R.
    Dudek, Gregory
    Meger, David
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 9579 - 9587
  • [8] Combined scaling for zero-shot transfer learning
    Pham, Hieu
    Dai, Zihang
    Ghiasi, Golnaz
    Kawaguchi, Kenji
    Liu, Hanxiao
    Yu, Adams Wei
    Yu, Jiahui
    Chen, Yi-Ting
    Luong, Minh-Thang
    Wu, Yonghui
    Tan, Mingxing
    V. Le, Quoc
    NEUROCOMPUTING, 2023, 555
  • [9] Transfer Increment for Generalized Zero-Shot Learning
    Feng, Liangjun
    Zhao, Chunhui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) : 2506 - 2520
  • [10] Complex Question Enhanced Transfer Learning for Zero-Shot Joint Information Extraction
    Zhang, Ying
    Meng, Fandong
    Chen, Yufeng
    Xu, Jinan
    Zhou, Jie
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 261 - 275