Efficient and stable perovskite solar cells using manganese-doped nickel oxide as the hole transport layer

被引:5
|
作者
Wu, You-Wei [1 ]
Chang, Chih-Yu [1 ]
Chiu, Fu-Bing [1 ]
Yang, Sheng-Hsiung [1 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Coll Photon, Inst Lighting & Energy Photon, 301,Sect 2,Gaofa 3rd Rd, Tainan 71150, Taiwan
关键词
HALIDE PEROVSKITES; HIGH-PERFORMANCE; SEQUENTIAL DEPOSITION; HIGHLY EFFICIENT; THIN-FILM; LEAD; NIOX; CATIONS; LITHIUM; METHYLAMMONIUM;
D O I
10.1039/d2ra03411e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic/inorganic hybrid perovskite solar cells (PSCs) have represented a promising field of renewable energy in recent years due to the compelling advantages of high efficiency, facile fabrication process and low cost. The development of inorganic p-type metal oxide materials plays an important role in the performance and stability of PSCs for commercial purposes. Herein a facile and effective way to improve hole extraction and conductivity of NiOx films by manganese (Mn) doping is demonstrated in this study. A Mn-doped NiOx layer was prepared by the sol-gel process and served as the hole transport layer (HTL) in inverted PSCs. The results suggest that Mn-doped NiOx is helpful for the growth of perovskite layers with larger grains and higher crystallinity compared with the pristine NiOx. Furthermore, the perovskite films deposited on Mn-doped NiOx exhibit lower recombination and shorter carrier lifetime. The device based on 0.5 mol% Mn-doped NiOx as the HTL displayed the best power conversion efficiency (PCE) of 17.35% and a high fill factor (FF) of 81%, which were significantly higher than those of the one using the pristine NiOx HTL (PCE = 14.71%, FF = 73%). Moreover, the device retained 70% of its initial efficiency after 35 days' storage under a continuous halogen lamp matrix exposure with an illumination intensity of 1000 W m(-2). Our results widen the development of PSCs for future production.
引用
收藏
页码:22984 / 22995
页数:12
相关论文
共 50 条
  • [1] Potassium-Doped Nickel Oxide as the Hole Transport Layer for Efficient and Stable Inverted Perovskite Solar Cells
    Chen, Po-Chih
    Yang, Sheng-Hsiung
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) : 6705 - 6713
  • [2] Praseodymium doped nickel oxide as hole-transport layer for efficient planar Perovskite Solar Cells
    Tahir M.
    Abd-ur-Rehman H.M.
    Khoja A.H.
    Anwar M.
    Mansoor A.
    Abbas F.
    Shakir S.
    Optik, 2024, 300
  • [3] Nickel Oxide as Efficient Hole Transport Materials for Perovskite Solar Cells
    Yin, Xingtian
    Guo, Yuxiao
    Xie, Haixia
    Que, Wenxiu
    Kong, Ling Bing
    SOLAR RRL, 2019, 3 (05):
  • [4] Promising Cobalt Oxide Hole Transport Layer for Efficient and Stable Inverted Perovskite Solar Cells
    Cui, Xiaxia
    Zhang, Xuewei
    Guo, Tonghui
    Tang, Guanqi
    Jin, Junjun
    Zhu, Zhenkun
    Chu, Daping
    Gou, Yanzhuo
    Li, Jinhua
    Guo, Yuzheng
    Robertson, John
    Tai, Qidong
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [5] Enhanced inverted perovskite solar cells via indium doped nickel oxide as hole transport layer
    Gonzalez-Hernandez, Martin
    Reyes, Sergio E.
    Erazo, Eider A.
    Ortiz, Pablo
    Cortes, Maria T.
    SOLAR ENERGY, 2024, 276
  • [6] Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells
    Thiruchelvan, Ponmudi Selvan
    Lai, Chien-Chih
    Tsai, Chih-Hung
    COATINGS, 2021, 11 (06)
  • [7] Copper Bromide Hole Transport Layer for Stable and Efficient Perovskite Solar Cells
    Javaid, Hamza
    Heller, Nicholas
    Duzhko, Volodimyr V.
    Hight-Huf, Nicholas
    Barnes, Michael D.
    Venkataraman, D.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (07): : 8075 - 8083
  • [8] Efficient and Stable Inverted Perovskite Solar Cells with Graphene Oxide-Modified Hole Transport Layer
    Chen, Yuanyuan
    Cheng, Zhendong
    Qiao, Feiyang
    Gao, Chao
    Zhang, Dezhao
    Wang, Yangrunqian
    Wang, Xin
    Liang, Jinjin
    Liu, Hong
    Shen, Wenzhong
    ENERGY TECHNOLOGY, 2022, 10 (11)
  • [9] Efficient solar trapping with vanadium oxide hole transport layer in perovskite solar cells
    Kumar, Kapil
    Giri, Pushpa
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [10] Efficient and stable planar perovskite solar cells using co-doped tin oxide as the electron transport layer
    Sakthivel, P.
    Foo, Shini
    Thambidurai, M.
    Harikesh, P. C.
    Mathews, Nripan
    Yuvakkumar, R.
    Ravi, G.
    Dang, Cuong
    JOURNAL OF POWER SOURCES, 2020, 471