A full system of invariants for third-order linear partial differential operators in general form

被引:0
|
作者
Shemyakova, Ekaterina [1 ]
Winkler, Franz [1 ]
机构
[1] Johannes Kepler Univ Linz, RISC, Altenbergerstr 69, A-4040 Linz, Austria
关键词
linear partial differential operators; invariants; gauge transformations;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We find a full system of invariants with respect to gauge transformations L --> g(-1)Lg for third-order hyperbolic linear partial differential operators on the plane. The operators are considered in a normalized form, in which they have the symbol Sym(L) = (pX + qY)XY for some non-zero bivariate functions p and q. For this normalized form, explicit formulae are given. The paper generalizes a previous result for the special, but important, case p = q = 1.
引用
收藏
页码:360 / +
页数:2
相关论文
共 50 条
  • [1] A full system of invariants for third-order linear partial differential operators
    Shemyakova, Ekaterina
    ARTIFICIAL INTELLIGENCE AND SYMBOLIC COMPUTATION, PROCEEDINGS, 2006, 4120 : 106 - 115
  • [2] On the Invariant Properties of Hyperbolic Bivariate Third-Order Linear Partial Differential Operators
    Shemyakova, Ekaterina
    Winkler, Franz
    COMPUTER MATHEMATICS, 2008, 5081 : 199 - 212
  • [3] Invariant Properties of Third-Order Non-hyperbolic Linear Partial Differential Operators
    Shemyakova, Ekaterina
    INTELLIGENT COMPUTER MATHEMATICS, PROCEEDINGS, 2009, 5625 : 154 - 169
  • [4] Solvability of Certain Group of the Third-Order Linear Differential Operators
    Chvalina, Jan
    Chvalinova, Ludmila
    Moucka, Jiri
    XXX INTERNATIONAL COLLOQUIUM ON THE MANAGEMENT OF EDUCATIONAL PROCESS, PROCEEDINGS SCIENCE, 2012, : 69 - 78
  • [5] Differential invariants for third-order evolution equations
    Tsaousi, C.
    Tracina, R.
    Sophocleous, C.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (02) : 352 - 359
  • [6] INVARIANTS OF NONLINEAR DIFFERENTIAL EQUATION OF THIRD-ORDER
    BANDIC, I
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (01): : 77 - &
  • [7] NORMAL DIFFERENTIAL OPERATORS OF THIRD-ORDER
    Ismailov, Z. I.
    Erol, M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (05): : 675 - 688
  • [8] Laplace maps and constraints for a class of third-order partial differential operators
    Athorne, Chris
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (08)
  • [9] On a Third-Order Partial Differential Equation
    N. S. Berezkina
    E. E. Kulesh
    I. P. Martynov
    V. A. Pron'ko
    Differential Equations, 2005, 41 : 1436 - 1441
  • [10] On a third-order partial differential equation
    Berezkina, NS
    Kulesh, EE
    Martynov, IP
    Pron'ko, VA
    DIFFERENTIAL EQUATIONS, 2005, 41 (10) : 1436 - 1441