Sparse kernel extreme components analysis

被引:0
|
作者
Sun, Zonghai [1 ]
Gan, Liangzhi
机构
[1] S China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510640, Peoples R China
[2] Xuzhou Normal Univ, Dept Elect Engn, Xuzhou 221011, Peoples R China
来源
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS | 2006年 / 13E卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The extreme components analysis is the naturally generalization of principal components analysis and minor components analysis, so it also suffers the same difficulties that principal components analysis encountered for nonlinear projection of data. Inspired by M. E. Tipping' idea, we introduce the sparse kernel extreme components analysis for nonlinear projection of data in this paper. Approximating the covariance matrix in feature space, we may obtain a highly sparse form of kernel extreme components analysis with negligible loss of performance. Afterwards, multi-layer support vector machine is presented based on sparse kernel extreme components analysis for multi-input multi-output regression estimation problem. The result of numerical simulation demonstrates that multi-layer support vector machine is a very effective method for multi-input multi-output regression estimation problem and shows good approximate performance.
引用
收藏
页码:2152 / 2155
页数:4
相关论文
共 50 条
  • [1] Extreme Kernel Sparse Learning for Tactile Object Recognition
    Liu, Huaping
    Qin, Jie
    Sun, Fuchun
    Guo, Di
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) : 4509 - 4520
  • [2] CONVEX COMPONENTS EXTREME POINTS AND CONVEX KERNEL
    KENELLY, JW
    HARE, WR
    EVANS, BD
    LUDESCHE.WH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 21 (01) : 83 - &
  • [3] Sparse kernel feature analysis
    Smola, AJ
    Mangasarian, OL
    Schölkopf, B
    CLASSIFICATION, AUTOMATION, AND NEW MEDIA, 2002, : 167 - 178
  • [4] Extreme components analysis
    Welling, M
    Agakov, F
    Williams, CKI
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 137 - 144
  • [5] Sparse Kernel Fisher Discriminant Analysis
    Xing, HJ
    Yang, YJ
    Wang, Y
    Hu, BG
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 824 - 830
  • [6] Sparse kernel principal component analysis
    Tipping, ME
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 633 - 639
  • [7] Sparse Ridge let Kernel Regressor and its online sequential extreme learning
    Yang, Shuyuan
    Yang, Lixia
    Feng, Zhixi
    Wang, Min
    Jiao, Licheng
    NEUROCOMPUTING, 2014, 134 : 173 - 180
  • [8] Sparse multinomial kernel discriminant analysis (sMKDA)
    Harrison, Robert F.
    Pasupa, Kitsuchart
    PATTERN RECOGNITION, 2009, 42 (09) : 1795 - 1802
  • [9] Regularized Sparse Kernel Slow Feature Analysis
    Boehmer, Wendelin
    Gruenewaelder, Steffen
    Nickisch, Hannes
    Obermayer, Klaus
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I, 2011, 6911 : 235 - 248
  • [10] Bayesian Extreme Components Analysis
    Chen, Yutian
    Welling, Max
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1022 - 1027