Optimality Conditions for Nonsmooth Equilibrium Problems via Hadamard Directional Derivative

被引:3
|
作者
Ardali, A. Ansari [1 ]
Movahedian, N. [1 ]
Nobakhtian, S. [1 ,2 ]
机构
[1] Univ Isfahan, Dept Math, POB 81745-163, Esfahan, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Equilibrium problems; Optimality conditions; Constraint qualifications; Hadamard directional derivative; VARIATIONAL INEQUALITY CONSTRAINTS; MATHEMATICAL PROGRAMS; OPTIMIZATION PROBLEMS; SUFFICIENT CONDITIONS;
D O I
10.1007/s11228-015-0354-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a mathematical program with equilibrium constraints (MPEC) formulated as a mathematical program with complementarity constraints. We obtain necessary conditions of Fritz John (FJ) and Karush-Kuhn-Tucker (KKT) types for a nonsmooth (MPEC) problem in terms of the lower Hadamard directional derivative. In particular sufficient conditions for MPECs are given where the involved functions have pseudoconvex sublevel sets. The functions with pseudoconvex sublevel sets is a class of generalized convex functions that include quasiconvex functions.
引用
收藏
页码:483 / 497
页数:15
相关论文
共 50 条