Automated non-destructive inspection of Fused Filament Fabrication components using Thermographic Signal Reconstruction

被引:21
|
作者
Siegel, Joshua E. [1 ]
Beemer, Maria F. [2 ]
Shepard, Steven M. [2 ]
机构
[1] Michigan State Univ, Comp Sci & Engn, E Lansing, MI 48824 USA
[2] Thermal Wave Imaging Inc, 845 Livernois St, Ferndale, MI 48220 USA
关键词
Non-destructive testing; Inspection and evaluation; Thermographic Signal Reconstruction; Artificial Intelligence; Fused Filament Fabrication; Deep neural networks; ENHANCEMENT; FIELD;
D O I
10.1016/j.addma.2019.100923
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Manufacturers struggle to produce low-cost, robust and intricate components in small batches. Additive processes like Fused Filament Fabrication (FFF) inexpensively generate such complex geometries, but potential defects may limit these components' viability in critical applications. We present a high-accuracy, high-throughput and low-cost approach to automated non-destructive testing (NDT) for FFF interlayer delamination. This Artificially Intelligent (AI) approach utilizes Flash Thermography (FT) data processed with Thermographic Signal Reconstruction (TSR). A Deep Neural Network (DNN) attains 95.4% per-pixel accuracy when differentiating four delamination severities 5 mm below the surface in PolyLactic Acid (PLA) widgets, and 98.6% accuracy in differentiating acceptable from unacceptable states for the same components. Automation supports time- and cost-efficient inspection for delamination defects in 100% of widgets, supporting FFF's use in critical and lot-size one applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Developing effective thermal signal processing to improve thermographic non-destructive inspection of metallic components
    Meshkizadeh, Pouria
    Farahani, Mohammadreza
    NONDESTRUCTIVE TESTING AND EVALUATION, 2022, 37 (04) : 367 - 385
  • [2] The computational enhancement of automated non-destructive inspection
    Brierley, N.
    Tippetts, T.
    Cawley, P.
    INSIGHT, 2014, 56 (11) : 599 - 606
  • [3] Data fusion for automated non-destructive inspection
    Brierley, N.
    Tippetts, T.
    Cawley, P.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2167):
  • [4] Improving the Reliability of Automated Non-Destructive Inspection
    Brierley, N.
    Tippetts, T.
    Cawley, P.
    40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 10TH INTERNATIONAL CONFERENCE ON BARKHAUSEN NOISE AND MICROMAGNETIC TESTING, VOLS 33A & 33B, 2014, 1581 : 1912 - 1919
  • [5] IMPROVING THE RELIABILITY OF AUTOMATED NON-DESTRUCTIVE INSPECTION
    Brierley, Nick
    Tippetts, Trevor
    Cawley, Peter
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 31A AND 31B, 2012, 1430 : 1824 - 1831
  • [6] Thermographic non-destructive inspection of wind turbine blades using unmanned aerial systems
    Galleguillos, C.
    Zorrilla, A.
    Jimenez, A.
    Diaz, L.
    Montiano, A. L.
    Barroso, M.
    Viguria, A.
    Lasagni, F.
    PLASTICS RUBBER AND COMPOSITES, 2015, 44 (03) : 98 - 103
  • [7] Non-destructive testing of components - Visual weld inspection
    Welding and Cutting, 2019, 18 (01): : 22 - 22
  • [8] Automated Quantification of Raster Orientation of Fused Filament Fabrication Components Using Ultrasonic Testing
    Amin, Atik
    Jack, David A.
    Fleck, Trevor J.
    APPLIED SCIENCES-BASEL, 2024, 14 (11):
  • [9] DATA FUSION FOR IMPROVING THE RELIABILITY OF AUTOMATED NON-DESTRUCTIVE INSPECTION
    Brierley, N.
    Tippetts, T.
    Cawley, P.
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 32A AND 32B, 2013, 1511 : 1781 - 1788
  • [10] Automated Non-Destructive Weld Inspection in Splash/Subsea Zone
    Husby, Karsten
    Bjerkeng, Magnus
    Thielemann, Jens T.
    Denstadli, Johannes H.
    Johnsen, Christian Eirik
    SPE Offshore Europe Conference Proceedings, 2023, 2023-September