Multiple solutions for a critical fractional elliptic system involving concave-convex nonlinearities

被引:17
|
作者
Chen, Wenjing [1 ]
Deng, Shengbing [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
critical fractional elliptic system; concave-convex nonlinearities; fibering maps; Nehari manifold; CHANGING WEIGHT FUNCTION; BREZIS-NIRENBERG RESULT; POSITIVE SOLUTIONS; NEHARI MANIFOLD; LAPLACIAN; EQUATIONS; OPERATORS; INEQUALITIES; DRIVEN;
D O I
10.1017/S0308210516000032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the multiplicity of solutions to the system driven by a fractional operator with homogeneous Dirichlet boundary conditions. Namely, using fibering maps and the Nehari manifold, we obtain multiple solutions to the following fractional elliptic system: (-Delta)(s)u = lambda vertical bar u vertical bar(q-2)u + 2 alpha/alpha + beta vertical bar u vertical bar alpha-2u vertical bar v vertical bar beta in Omega, (-Delta)(s)v = mu vertical bar v vertical bar(q-2)v + 2 beta/alpha + beta vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta-2)v in Omega, u - v - 0 in R-n \ Omega, where Omega is a smooth bounded set in R-n, n > 2s, with s is an element of (0, 1); (-Delta)(s) is the fractional Laplace operator;, lambda, mu > 0 are two parameters; the exponent n/(n - 2s) <= q < 2; a > 1, beta > 1 satisfy 2 < alpha + beta = 2(s)*; 2(s)(*) = 2n/(n - 2s) (n > 2s) is the fractional critical Sobolev exponent.
引用
收藏
页码:1167 / 1193
页数:27
相关论文
共 50 条