On the reduction of multivariate quadratic systems to best rank-1 approximation of three-way tensors

被引:4
|
作者
da Silva, Alex P. [1 ]
Comon, Pierre [1 ]
de Almeida, Andre L. F. [2 ]
机构
[1] CNRS UMR2016, GIPSA Lab, Grenoble Campus,BP-46, F-38402 St Martin Dheres, France
[2] Univ Fed Ceara, Dept Teleinformat Engn, Campus Pici S-N,CP 6005, BR-60455970 Fortaleza, CE, Brazil
基金
欧洲研究理事会;
关键词
Quadratic systems; Tensor; Rank-1; approximation; DECOMPOSITION; OPTIMIZATION; CONVERGENCE; RELAXATIONS;
D O I
10.1016/j.aml.2016.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that a general quadratic multivariate system in the real field can be reduced to a best rank-1 three-way tensor approximation problem. This fact provides a new approach to tackle a system of quadratic polynomials equations. Some experiments using the standard alternating least squares (ALS) algorithm are drawn to evince the usefulness of rank-1 tensor approximation methods. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:9 / 15
页数:7
相关论文
共 38 条
  • [1] On the best rank-1 approximation of higher-order supersymmetric tensors
    Kofidis, E
    Regalia, PA
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 23 (03) : 863 - 884
  • [2] On the best rank-1 approximation to higher-order symmetric tensors
    Ni, Guyan
    Wang, Yiju
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (9-10) : 1345 - 1352
  • [3] Several approximation algorithms for sparse best rank-1 approximation to higher-order tensors
    Xianpeng Mao
    Yuning Yang
    Journal of Global Optimization, 2022, 84 : 229 - 253
  • [4] Several approximation algorithms for sparse best rank-1 approximation to higher-order tensors
    Mao, Xianpeng
    Yang, Yuning
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (01) : 229 - 253
  • [5] Subtracting a best rank-1 approximation from pxpx2p≥2) tensors
    Kong, Xu
    Jiang, Yao-Lin
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (03) : 503 - 523
  • [6] Continuation methods for nonnegative rank-1 approximation of nonnegative tensors
    Hsu, Fu-Shin
    Kuo, Yueh-Cheng
    Liu, Ching-Sung
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (06)
  • [7] ON STRASSEN'S RANK ADDITIVITY FOR SMALL THREE-WAY TENSORS
    Buczynski, Jaroslaw
    Postinghel, Elisa
    Rupniewski, Filip
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) : 106 - 133
  • [8] Probabilistic bounds on best rank-1 approximation ratio
    Kozhasov, Khazhgali
    Tonelli-Cueto, Josue
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (17): : 3000 - 3028
  • [9] Subtracting a best rank-1 approximation may increase tensor rank
    Stegeman, Alwin
    Comon, Pierre
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (07) : 1276 - 1300
  • [10] Symmetric rank-1 approximation of symmetric high-order tensors
    Wu, Leqin
    Liu, Xin
    Wen, Zaiwen
    OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (02): : 416 - 438