On splitting methods for Schrodinger-Poisson and cubic nonlinear Schrodinger equations

被引:254
|
作者
Lubich, Christian [1 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
split-step method; split-operator scheme; semilinear Schrodinger equations; error analysis; stability; regularity;
D O I
10.1090/S0025-5718-08-02101-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an error analysis of Strang-type splitting integrators for nonlinear Schrodinger equations. For Schrodinger-Poisson equations with an H-4-regular solution, a first-order error bound in the H-1 norm is shown and used to derive a second-order error bound in the L-2 norm. For the cubic Schrodinger equation with an H-4-regular solution first-order convergence in the H-2 norm is used to obtain second-order convergence in the L-2 norm. Basic tools in the error analysis are Lie-commutator bounds for estimating the local error and H-m-conditional stability for error propagation, where m = 1 for the Schrodinger-Poisson system and m = 2 for the cubic Schrodinger equation.
引用
收藏
页码:2141 / 2153
页数:13
相关论文
共 50 条