Fabrication and electrochemical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes by sol-gel method

被引:37
|
作者
Yi, Eun-jeong [1 ]
Yoon, Keun-young [1 ]
Jung, Hyun-Ah [1 ]
Nakayama, Tadachika [2 ]
Ji, Mi-jung [3 ]
Hwang, Haejin [1 ]
机构
[1] Inha Univ, Dept Mat Sci & Engn, 100 Inha Ro, Incheon 22212, South Korea
[2] Nagaoka Univ Technol, Dept Mech Engn, 1603-1 Kamitomioka, Nagaoka, Niigata 9402188, Japan
[3] Korea Inst Ceram Engn & Tech, 101 Soho Ro, Jinju Si, Gyeongsangnam D, South Korea
基金
新加坡国家研究基金会;
关键词
Sol-gel technique; All-solid-state lithium batteries; Solid electrolytes; NASICON; Conductivity; ELECTRICAL-PROPERTIES; GLASS-CERAMICS; AL;
D O I
10.1016/j.apsusc.2018.12.202
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium super ionic conductor (NASICON)-type solid electrolytes, Li1.3Al0.3Ti1.7(PO4)(3) (LATP), have high lithium ion conductivity and chemical/electrochemical stability. In this study, we proposed a new sol-gel route to synthesize LATP precursor powder. The LATP powder was prepared from lithium nitrate (LiNO3), aluminum phosphate (AlPO4), ammonium phosphate (NH3PO4), and titanium isopropoxide (Ti-(OCH(CH3)(2))(4)). The LATP electrolyte with high relative density (99%) and lithium ion conductivity (4.2 x 10(-4) S/cm at 30 degrees C) could be fabricated by sintering the precursor powder at 1000 degrees C for 6 h. XRD analysis results revealed that the electrolyte sample sintered at 1000 degrees C for 6 h was impurity-free single phase LATP. FE-SEM observations showed that the grain size and density increased with increasing sintering temperature. AC impedance spectra and SEM observations suggest that the enhanced lithium ion conductivity was due to an increase in grain size and density of the LATP electrolyte.
引用
收藏
页码:622 / 626
页数:5
相关论文
共 50 条
  • [1] Sol-gel synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    G. B. Kunshina
    O. G. Gromov
    E. P. Lokshin
    V. T. Kalinnikov
    Russian Journal of Inorganic Chemistry, 2014, 59 : 424 - 430
  • [2] Sol-gel synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Kunshina, G. B.
    Gromov, O. G.
    Lokshin, E. P.
    Kalinnikov, V. T.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2014, 59 (05) : 424 - 430
  • [3] The relationship of structural and electrochemical properties of NASICON structure Li1.3Al0.3Ti1.7 (PO4)3 electrolytes by a sol-gel method
    Yoon, Yongsub
    Kim, Junghoon
    Park, Chanhwi
    Shin, Dongwook
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2013, 14 (04): : 563 - 566
  • [4] Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol-gel technique
    Wu, XM
    Li, XH
    Zhang, YH
    Xu, MF
    He, ZQ
    MATERIALS LETTERS, 2004, 58 (7-8) : 1227 - 1230
  • [5] Preparation of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte via a sol-gel method using various Ti sources
    Kotobuki, Masashi
    Koishi, Masaki
    JOURNAL OF ASIAN CERAMIC SOCIETIES, 2020, 8 (03): : 891 - 897
  • [6] Ionic conductivity of solid electrolytes based on Li1.3Al0.3Ti1.7(PO4)(3)
    Gromov, OG
    Kunshina, GB
    Kuzmin, AP
    Kalinnikov, VT
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 1996, 69 (03) : 385 - 388
  • [7] Effect of sintering conditions on the properties of sol-gel-derived Li1.3Al0.3Ti1.7(PO4)3
    Xian Ming Wu
    Jin Lian Liu
    Shang Chen
    Ming You Ma
    Jian Ben Liu
    Ionics, 2010, 16 : 827 - 831
  • [9] Influence of Liquid Solutions on the Ionic Conductivity of Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolytes
    Huang, Yi
    Jiang, Yue
    Zhou, Yuxi
    Hu, Zhiwei
    Zhu, Xiaohong
    CHEMELECTROCHEM, 2019, 6 (24): : 6016 - 6026
  • [10] Sol-gel preparation and characterization of Li1.3Al0.3Ti1.7(PO4)3 sintered with flux of LiBO2
    Xianming Wu
    Runxiu Li
    Shang Chen
    Zeqiang He
    Mingyou Ma
    Rare Metals, 2010, 29 : 515 - 518