Laser powder bed fusion of AlSi10Mg alloy: Numerical investigation on the temperature field evolution

被引:9
|
作者
Ricci, Sara [1 ]
Testa, Gabriel [1 ]
Iannitti, Gianluca [1 ]
Ruggiero, Andrew [1 ]
机构
[1] Univ Cassino & Southern Lazio, I-03043 Cassino, Italy
来源
FORCES IN MECHANICS | 2022年 / 8卷
关键词
Laser powder bed fusion; Nonlinear transient thermal analysis; Temperature field; Melt pool; AlSi10Mg; RESIDUAL-STRESS; MICROSTRUCTURE; MODEL;
D O I
10.1016/j.finmec.2022.100109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufactured parts are subjected to intense thermal gradients and high temperature peaks which affect mechanical properties. Such thermal cycles can cause distortions, residual stresses and microstructural heterogeneities. Since the experimental measurement of the temperature field is extremely difficult, numerical simulation can be used to obtain a description of the phenomenon. Here, a three-dimensional computational model for the prediction of the temperature field during the laser powder bed fusion process on AlSi10Mg alloy was developed. Scan path, the geometry of the heat source and the progressive generation of the part during the process have been simulated with finite element method. This approach was used in a small scale representation, as the extremely fast temperature gradients, high scanning speeds and amount of thermal energy input make the phenomenon extremely localized. The predicted melt pool size, compared with microstructural analysis results on reference samples, was used to validate the computational model.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Corrosion in laser powder bed fusion AlSi10Mg alloy
    Laieghi, Hossein
    Kvvssn, Varma
    Butt, Muhammad Muteeb
    Ansari, Peyman
    Salamci, Metin U.
    Patterson, Albert E.
    Salamci, Elmas
    ENGINEERING REPORTS, 2024, 6 (10)
  • [2] Understanding the Laser Powder Bed Fusion of AlSi10Mg Alloy
    Hyer, Holden
    Zhou, Le
    Park, Sharon
    Gottsfritz, Guilherme
    Benson, George
    Tolentino, Bjorn
    McWilliams, Brandon
    Cho, Kyu
    Sohn, Yongho
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2020, 9 (04) : 484 - 502
  • [3] Understanding the Laser Powder Bed Fusion of AlSi10Mg Alloy
    Holden Hyer
    Le Zhou
    Sharon Park
    Guilherme Gottsfritz
    George Benson
    Bjorn Tolentino
    Brandon McWilliams
    Kyu Cho
    Yongho Sohn
    Metallography, Microstructure, and Analysis, 2020, 9 : 484 - 502
  • [4] Microstructural evolution and hardening phenomenon caused by aging of AlSi10Mg alloy by laser powder bed fusion
    Maeshima, Takashi
    Oh-ishi, Keiichiro
    Kadoura, Hiroaki
    HELIYON, 2024, 10 (06)
  • [5] Boosting Productivity of Laser Powder Bed Fusion for AlSi10Mg
    Defanti, Silvio
    Cappelletti, Camilla
    Gatto, Andrea
    Tognoli, Emanuele
    Fabbri, Fabrizio
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2022, 6 (05):
  • [6] Influence of powder size on defect generation in laser powder bed fusion of AlSi10Mg alloy
    Chu, Fuzhong
    Li, Erlei
    Shen, Haopeng
    Chen, Zhuoer
    Li, Yixin
    Liu, Hui
    Min, Shiling
    Tian, Xinni
    Zhang, Kai
    Zhou, Zongyan
    Zou, Ruiping
    Hou, Juan
    Wu, Xinhua
    Huang, Aijun
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 94 : 183 - 195
  • [7] Role of powder particle size on laser powder bed fusion processability of AlSi10mg alloy
    Balbaa, M. A.
    Ghasemi, A.
    Fereiduni, E.
    Elbestawi, M. A.
    Jadhav, S. D.
    Kruth, J-P
    ADDITIVE MANUFACTURING, 2021, 37
  • [8] Effect of the building platform temperature on localized corrosion of the Laser Powder Bed Fusion AlSi10Mg alloy
    Cabrini, M.
    Lorenzi, S.
    Pastore, T.
    METALLURGIA ITALIANA, 2022, 114 (02): : 18 - 22
  • [9] Study on AlSi10Mg Alloy with Complex Flow Channels by Laser Powder Bed Fusion
    Zhu Xiaogang
    Dong Anping
    Cheng Lingyu
    Sun Jing
    Liu Zhengwu
    Guo Lijie
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (07)
  • [10] Modeling and Optimization of Process Parameters for Laser Powder Bed Fusion of AlSi10Mg Alloy
    Samantaray M.
    Thatoi D.N.
    Sahoo S.
    Lasers in Manufacturing and Materials Processing, 2019, 6 (4) : 356 - 373