Normals of the butterfly subdivision scheme surfaces and their applications

被引:5
|
作者
Shenkman, P [1 ]
Dyn, N [1 ]
Levin, D [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
triangulation; subdivision; butterfly scheme; regular and irregular points; normals; offsets; shading;
D O I
10.1016/S0377-0427(98)00213-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents explicit formulas for calculating normals to surfaces generated by the butterfly interpolatory subdivision scheme from a general initial triangulation of control points. Two applications of these formulas are presented: building offsets to surfaces generated by the butterfly scheme and Gouraud shading of surfaces generated by this scheme as well as shading of their offsets. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:157 / 180
页数:24
相关论文
共 50 条
  • [1] Butterfly subdivision scheme
    Proceedings of the Summer School in Numerical Analysis, 1992, 2
  • [2] Normals of subdivision surfaces and their control polyhedra
    Ginkel, I.
    Peters, J.
    Umlauf, G.
    COMPUTER AIDED GEOMETRIC DESIGN, 2007, 24 (02) : 112 - 116
  • [3] Computation of normals for stationary subdivision surfaces
    Kawaharada, Hiroshi
    Sugihara, Kokichi
    GEOMETRIC MODELING AND PROCESSING - GMP 2006, PROCEEDINGS, 2006, 4077 : 585 - 594
  • [4] Dynamic modeling of butterfly subdivision surfaces
    Mandal, C
    Qin, H
    Vemuri, BC
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2000, 6 (03) : 265 - 287
  • [5] A subdivision scheme for surfaces of revolution
    Morin, G
    Warren, J
    Weimer, H
    COMPUTER AIDED GEOMETRIC DESIGN, 2001, 18 (05) : 483 - 502
  • [6] A BUTTERFLY SUBDIVISION SCHEME FOR SURFACE INTERPOLATION WITH TENSION CONTROL
    DYN, N
    LEVIN, D
    GREGORY, JA
    ACM TRANSACTIONS ON GRAPHICS, 1990, 9 (02): : 160 - 169
  • [7] Improving smoothness and accuracy of Modified Butterfly subdivision scheme
    Novar, Paola
    Romani, Lucia
    Yoon, Jungho
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 64 - 79
  • [8] A subdivision scheme for Poisson curves and surfaces
    Morin, G
    Goldman, R
    COMPUTER AIDED GEOMETRIC DESIGN, 2000, 17 (09) : 813 - 833
  • [9] Subdivision Curves on Surfaces and Applications
    Morera, Dimas Martinez
    Velho, Luiz
    Carvalho, Paulo Cezar
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2008, 5197 : 405 - 412
  • [10] Remeshing Visual Hull Approximation by Displaced Butterfly Subdivision Surfaces
    Lee, Jung
    Kim, Chang-Hun
    Kim, Sun-Jeong
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 1891 - 1899