Numerical exploration for structure design and free-energy loss analysis of the high-efficiency polysilicon passivated-contact p-type silicon solar cell

被引:18
|
作者
Zeng, Yuheng [1 ]
Yang, Qing [1 ,3 ]
Wan, Yimao [2 ]
Yang, Zhenhai [1 ]
Liao, Mingdun [1 ]
Huang, Yuqing [1 ]
Zhang, Zhi [1 ]
Guo, Xueqi [1 ]
Wang, Zhixue [1 ]
Gao, Pingqi [1 ]
Wu, Chung-Han [1 ]
Yan, Baojie [1 ]
Ye, Jichun [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Australian Natl Univ, Coll Comp Sci & Engn, Res Sch Engn, Canberra, ACT 0200, Australia
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Tunnel oxide; Polysilicon passivated contact; TOPCon; Numerical simulation; FELA; p-type Si solar cell; CARRIER TRANSPORT; SI; SIMULATION; MODEL; QUALITY; LAYER;
D O I
10.1016/j.solener.2018.12.044
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, the application of the p-type and n-type polysilicon passivated contact on industrial-level p-type silicon solar cell is studied using numerical simulation. The effects of (i) the structure design, (ii) the bulk lifetime and resistivity of the p-type wafer, and (iii) the carrier selectivity of polysilicon passivated contact on cell performances are investigated. Furthermore, the corresponding energy-loss pathways are classified by using free energy loss analysis (FELA). In essence, the rear-junction solar cell with the n-type polysilicon passivated-contact generates more internal power because of the better surface passivation and less front metallization shading, but the efficiency potential is limited by the low lifetime of the state-of-the-art p-type Czochralski (Cz) wafer. Thus, the p-type polysilicon passivated contact serving as the back-surface field would be more favorable if the lifetime of the p-type Cz silicon were less than 350 is. Over the long term, the lifetime of the p-type wafer possibly becomes the bottleneck of the high-efficiency polysilicon passivated-contact solar cells. Finally, we present the roadmap toward the 23% industrial p-type silicon solar cell with the p-type or n-type polysilicon passivated contact.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 35 条
  • [1] Ga-doped Czochralski silicon with rear p-type polysilicon passivating contact for high-efficiency p-type solar cells
    Zhi, Yuyan
    Zheng, Jingming
    Liao, Mingdun
    Wang, Wei
    Liu, Zunke
    Ma, Dian
    Feng, Mengmeng
    Lu, Linna
    Yuan, Shengzhao
    Wan, Yimao
    Yan, Baojie
    Wang, Yuming
    Chen, Hui
    Yao, Meiyi
    Zeng, Yuheng
    Ye, Jichun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 230
  • [2] TCAD based numerical exploration of industrially feasible tunnel oxide passivated contact on p-type silicon
    Bhajipale, Jayshree
    Kottantharayil, Anil
    Sreejith, K. P.
    SOLAR ENERGY, 2023, 253 : 231 - 239
  • [3] AFORS-HET-based numerical exploration of tunnel oxide passivated contact solar cells incorporating n- and p-type silicon substrates
    Saeed, Rabia
    Tahir, Sofia
    Ali, Adnan
    Albalawi, Hind
    Ashfaq, Arslan
    RSC ADVANCES, 2024, 14 (31) : 22253 - 22265
  • [4] P-type versus n-type silicon wafers: Prospects for high-efficiency commercial silicon solar cells
    Cotter, J. E.
    Guo, J. H.
    Cousins, P. J.
    Abbott, M. D.
    Chen, F. W.
    Fisher, K. C.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (08) : 1893 - 1901
  • [5] Numerical Simulation and Experiment of a High-Efficiency Tunnel Oxide Passivated Contact (TOPCon) Solar Cell Using a Crystalline Nanostructured Silicon-Based Layer
    Khokhar, Muhammad Quddamah
    Hussain, Shahzada Qamar
    Zahid, Muhammad Aleem
    Pham, Duy Phong
    Cho, Eun-Chel
    Yi, Junsin
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [6] Low-resistivity p-type a-Si:H/AZO hole contact in high-efficiency silicon heterojunction solar cells
    Wu, Zhuopeng
    Duan, Weiyuan
    Lambertz, Andreas
    Qiu, Depeng
    Pomaska, Manuel
    Yao, Zhirong
    Rau, Uwe
    Zhang, Liping
    Liu, Zhengxin
    Ding, Kaining
    APPLIED SURFACE SCIENCE, 2021, 542
  • [7] Optimization of p-Type Hydrogenated Microcrystalline Silicon Oxide Window Layer for High-Efficiency Crystalline Silicon Heterojunction Solar Cells
    Sritharathikhun, Jaran
    Jiang, Fangdan
    Miyajima, Shinsuke
    Yamada, Akira
    Konagai, Makoto
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (10) : 1016031 - 1016035
  • [8] Record-Efficiency n-Type and High-Efficiency p-Type Monolike Silicon Heterojunction Solar Cells with a High-Temperature Gettering Process
    Kivambe, Maulid M.
    Haschke, Jan
    Horzel, Jorg
    Aissa, Brahim
    Abdallah, Amir A.
    Belaidi, Abdelhak
    Monnard, Raphael
    Barraud, Loris
    Descoeudres, Antoine
    Debrot, Fabien
    Despeisse, Matthieu
    Boccard, Mathieu
    Ballif, Christophe
    Tabet, Nouar
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (07) : 4900 - 4906
  • [9] Improved Bifacial Properties of P-Type Passivated Emitter and Rear Cell Solar Cells toward High Mass Production Efficiency
    Yu, Jian
    Wang, Pu
    Chen, Kun
    Chen, Tao
    Su, Rong
    Wang, Lan
    Liu, Caiyi
    Yu, Junshen
    Huang, Yuelong
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (14):
  • [10] Simple power-loss analysis method for high-efficiency Interdigitated Back Contact (IBC) silicon solar cells
    Verlinden, Pierre J.
    Aleman, Monica
    Posthuma, Niels
    Fernandez, Jara
    Pawlak, Bartek
    Robbelein, Jo
    Debucquoy, Maarteen
    Van Wichelen, Koen
    Poortmans, Jef
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 106 : 37 - 41