Ionic liquid incorporated, redox-active blend polymer electrolyte for high energy density quasi-solid-state carbon supercapacitor

被引:111
|
作者
Yadav, Neetu [1 ]
Yadav, Nitish [1 ]
Hashmi, S. A. [1 ]
机构
[1] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India
关键词
Supercapacitors; Solid-state; Blend polymer electrolyte; Redox-additive; Hydroquinone; Activated carbon; DOUBLE-LAYER CAPACITORS; GEL POLYMER; HIGH-PERFORMANCE; ELECTROCHEMICAL CAPACITORS; STORAGE; KOH; HYDROQUINONE; SEPARATOR; NANOTUBES;
D O I
10.1016/j.jpowsour.2020.227771
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quasi-solid-state carbon supercapacitors offering high power density, flexibility and long cycle life have shown excellent potential for commercial applications. Recently, major focus of research and development on such supercapacitors is towards their improvement in energy density. A latest approach for improvement in energy storage is enhancement of redox-activity at electrode-electrolyte interfaces introducing suitable redox-additive in electrolytes. Here, an ionic liquid (IL)-incorporated redox-active gel polymer electrolyte (GPE) based on polymer blend of poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) is presented for application in carbon supercapacitors. The GPE, comprising IL 1-ethyl-3-methylimidazolium hydrogen-sulphate (EMIHSO4), added with redox-additive hydroquinone (HQ), immobilized in PVA/PVP, exhibits excellent flexibility, thermal and electrochemical stability with optimum ionic conductivity of similar to 9.3 mS cm(-1) at room temperature. Quasi-solidstate supercapacitors have been fabricated using GPEs with symmetrical electrodes of multiwalled carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs) and biomass-derived activated carbon (AC) for comparative studies. AC-electrodes illustrate superior capacitive responses over other carbon-electrodes due to their suitable porous texture with hierarchical porosity. Redox-activity of HQ-incorporated GPE at the interfaces with porous AC-electrodes provides optimum capacitive parameters of the device (C-s -485 F g(-1) and E-24.3 Wh kg(-1)) with prolonged cyclic performance up to 5000 charge-discharge cycles.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] High energy density and high working voltage of a quasi-solid-state supercapacitor with a redox-active ionic liquid added gel polymer electrolyte
    Geng, Cheng-Long
    Fan, Le-Qing
    Wang, Chun-Yan
    Wang, Yong-Lan
    Sun, Si-Jia
    Song, Ze-Yu
    Liu, Na
    Wu, Ji-Huai
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (47) : 18935 - 18942
  • [2] High energy density and low self-discharge of a quasi-solid-state supercapacitor with carbon nanotubes incorporated redox-active ionic liquid-based gel polymer electrolyte
    Fan, Le-Qing
    Tu, Qiu-Mei
    Geng, Cheng-Long
    Huang, Jian-Ling
    Gu, Yun
    Lin, Jian-Ming
    Huang, Yun-Fang
    Wu, Ji-Huai
    ELECTROCHIMICA ACTA, 2020, 331
  • [3] High-Energy-Density 3.5 V Carbon Supercapacitor Fabricated with Ionic-Liquid-Incorporated Redox-Active Gel Polymer Electrolyte
    Hor, Abbas Ali
    Yadav, Neetu
    Hashmi, S. A.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06) : 7627 - 7641
  • [4] An ionic liquid incorporated in a quasi-solid-state electrolyte for high-temperature supercapacitor applications
    Lee, Jeong Han
    Chae, Ji Su
    Jeong, Jun Hui
    Ahn, Hyo-Jun
    Roh, Kwang Chul
    CHEMICAL COMMUNICATIONS, 2019, 55 (100) : 15081 - 15084
  • [5] High energy density of quasi-solid-state supercapacitor based on redox-mediated gel polymer electrolyte
    Sun, Kanjun
    Ran, Feitian
    Zhao, Guohu
    Zhu, Yanrong
    Zheng, Yanping
    Ma, Mingguang
    Zheng, Xiaoping
    Ma, Guofu
    Lei, Ziqiang
    RSC ADVANCES, 2016, 6 (60) : 55225 - 55232
  • [6] Enhanced energy density quasi-solid-state supercapacitor based on an ionic liquid incorporated aqueous gel polymer electrolyte with a redox-additive trimethyl sulfoxonium iodide
    Hor, Abbas Ali
    Yadav, Neetu
    Hashmi, S. A.
    JOURNAL OF ENERGY STORAGE, 2023, 64
  • [7] Redox-active ionic liquid electrolyte with multi energy storage mechanism for high energy density supercapacitor
    You, Duck-Jae
    Yin, Zhenxing
    Ahn, Yong-keon
    Lee, Seong-Hun
    Yoo, Jeeyoung
    Kim, Youn Sang
    RSC ADVANCES, 2017, 7 (88): : 55702 - 55708
  • [8] Improvement of quasi-solid-state supercapacitors based on a "water-in-salt" hydrogel electrolyte by introducing redox-active ionic liquid and carbon nanotubes
    Fan, Le-Qing
    Geng, Cheng-Long
    Deng, Xu-Geng
    Chen, Jiao-Juan
    Wu, Zheng-Xue
    Huang, Yun-Fang
    Wu, Ji-Huai
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (22) : 10662 - 10670
  • [9] Redox-Active Quasi-Solid-State Electrolytes for Thermal Energy Harvesting
    Jin, Liyu
    Greene, George W.
    MacFarlane, Douglas R.
    Pringle, Jennifer M.
    ACS ENERGY LETTERS, 2016, 1 (04): : 654 - 658
  • [10] Ionic liquid-based quasi-solid-state electrolyte for supercapacitor application
    Lu, Hai
    Feng, Rui
    Wang, Peichun
    Yuan, Yan
    Zhang, Zhiyun
    Du, Huiling
    Li, Xiangyuan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (21) : 16828 - 16836