Casting Random Forests as Artificial Neural Networks (and Profiting from It)

被引:23
作者
Welbl, Johannes [1 ]
机构
[1] Heidelberg Collaboratory Image Proc, Heidelberg, Germany
来源
PATTERN RECOGNITION, GCPR 2014 | 2014年 / 8753卷
关键词
D O I
10.1007/978-3-319-11752-2_66
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While Artificial Neural Networks (ANNs) are highly expressive models, they are hard to train from limited data. Formalizing a connection between Random Forests (RFs) and ANNs allows exploiting the former to initialize the latter. Further parameter optimization within the ANN framework yields models that are intermediate between RF and ANN, and achieve performance better than RF and ANN on the majority of the UCI datasets used for benchmarking.
引用
收藏
页码:765 / 774
页数:10
相关论文
共 9 条
[1]  
Bache K., 2013, UCI Machine Learning Repository
[2]  
Bergstra J, 2010, P PYTH SCI C, V1, P3
[3]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[4]  
Bottou L., 1998, ONLINE LEARNING NEUR, V17, P142
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[7]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[8]   A System for Induction of Oblique Decision Trees [J].
Murthy, Sreerama K. ;
Kasif, Simon ;
Salzberg, Steven .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1994, 2 :1-32
[9]  
Rumelhart D.E., 1985, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, DOI [10.1016/b978-1-4832-1446-7.50035-2, DOI 10.7551/MITPRESS/5236.001.0001]