A perturbed quadratic equation involving Erd,lyi-Kober fractional integral

被引:2
|
作者
Caballero, Josefa [1 ]
Darwish, Mohamed Abdalla [2 ,3 ]
Sadarangani, Kishin [1 ]
机构
[1] Univ Las Palmas Gran Canaria, Dept Matemat, Campus Tafira Baja, Las Palmas Gran Canaria 35017, Spain
[2] King Abdulaziz Univ, Sci Fac Girls, Dept Math, Jeddah, Saudi Arabia
[3] Damanhour Univ, Dept Math, Fac Sci, Damanhour, Egypt
关键词
Measure of noncompactness; Darbo fixed point theorems; Erdelyi-Kober fractional integral; Quadratic integral equation; TRANSPORT-THEORY;
D O I
10.1007/s13398-015-0246-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the Banach space of real functions which are defined, bounded and continuous on an unbounded interval, we study the solvability of a perturbed Erd,lyi-Kober fractional quadratic integral equation.
引用
收藏
页码:541 / 555
页数:15
相关论文
共 50 条
  • [1] A perturbed quadratic equation involving Erdélyi–Kober fractional integral
    Josefa Caballero
    Mohamed Abdalla Darwish
    Kishin Sadarangani
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 541 - 555
  • [2] Erdélyi-Kober fractional diffusion
    Gianni Pagnini
    Fractional Calculus and Applied Analysis, 2012, 15 : 117 - 127
  • [3] Fractional Relaxation and Fractional Oscillation Models Involving Erdélyi-Kober Integrals
    Moreno Concezzi
    Roberto Garra
    Renato Spigler
    Fractional Calculus and Applied Analysis, 2015, 18 : 1212 - 1231
  • [4] New Inequalities Using Multiple Erdélyi-Kober Fractional Integral Operators
    Tassaddiq, Asifa
    Srivastava, Rekha
    Alharbi, Rabab
    Kasmani, Ruhaila Md
    Qureshi, Sania
    FRACTAL AND FRACTIONAL, 2024, 8 (04)
  • [5] Time-fractional porous medium equation: Erdélyi-Kober integral solutions, and numerical methods
    Lopez, Belen
    Okrasinska-Plociniczak, Hanna
    Plociniczak, Lukasz
    Rocha, Juan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 128
  • [6] Existence, uniqueness and limit property of solutions to quadratic Erd,lyi-Kober type integral equations of fractional order
    Wang, JinRong
    Zhu, Chun
    Feckan, Michal
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (06): : 779 - 791
  • [7] Applications of Erdélyi-Kober Fractional Integral for Solving Time-Fractional Tricomi-Keldysh Type Equation
    Kangqun Zhang
    Fractional Calculus and Applied Analysis, 2020, 23 : 1381 - 1400
  • [8] An Application of Multiple Erdélyi-Kober Fractional Integral Operators to Establish New Inequalities Involving a General Class of Functions
    Tassaddiq, Asifa
    Srivastava, Rekha
    Alharbi, Rabab
    Kasmani, Ruhaila Md
    Qureshi, Sania
    FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [9] Nonlinear Riemann-Liouville Fractional Differential Equations With Nonlocal Erdélyi-Kober Fractional Integral Conditions
    Natthaphong Thongsalee
    Sotiris K. Ntouyas
    Jessada Tariboon
    Fractional Calculus and Applied Analysis, 2016, 19 : 480 - 497
  • [10] Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann–Liouville and Erdélyi-Kober Q-Fractional Integral Conditions
    Akbar Zada
    Mehboob Alam
    Khansa Hina Khalid
    Ramsha Iqbal
    Ioan-Lucian Popa
    Qualitative Theory of Dynamical Systems, 2022, 21