Multivariate estimation of Poisson parameters

被引:1
|
作者
Stoltenberg, Emil Aas [1 ]
Hjort, Nils Lid [1 ]
机构
[1] Univ Oslo, Dept Math, PB 1053, N-0316 Oslo, Norway
关键词
Admissibility; Bayes; Empirical Bayes; Minimax; Shrinkage; EMPIRICAL BAYES ESTIMATORS; MULTIPARAMETER ESTIMATION; LIMITING RISK; DISCRETE; CONSTRUCTION;
D O I
10.1016/j.jmva.2019.104545
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is devoted to the multivariate estimation of a vector of Poisson means. A novel loss function that penalises bad estimates of each of the parameters and also the sum (or equivalently the mean) of the parameters is introduced. Under this loss function, a class of minimax estimators that uniformly dominate the maximum likelihood estimator is derived. Crucially, these methods have the property that for estimating a given component parameter, the full data vector is utilised. Estimators in this class can be fine-tuned to limit shrinkage away from the maximum likelihood estimator, thereby avoiding implausible estimates of the sum of the parameters. Further light is shed on this new class of estimators by showing that it can be derived by Bayesian and empirical Bayesian methods. In particular, we exhibit a generalisation of the Clevenson-Zidek estimator, and prove its admissibility. Moreover, a class of prior distributions for which the Bayes estimators uniformly dominate the maximum likelihood estimator under the new loss function is derived. A section is included involving weighted loss functions, notably also leading to a procedure improving uniformly on the maximum likelihood method in an infinite-dimensional setup. Importantly, some of our methods lead to constructions of new multivariate models for both rate parameters and count observations. Finally, estimators that shrink the usual estimators towards a data based point in the parameter space are derived and compared. (C) 2019 The Authors. Published by Elsevier Inc.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Quasi-maximum likelihood estimation of parameters in a multivariate Poisson process
    Szkutnik, Z
    METRIKA, 1996, 43 (01) : 1 - 16
  • [2] Estimation and Hypothesis Testing for the Parameters of Multivariate Zero Inflated Generalized Poisson Regression Model
    Sari, Dewi Novita
    Purhadi, Purhadi
    Rahayu, Santi Puteri
    Irhamah, Irhamah
    SYMMETRY-BASEL, 2021, 13 (10):
  • [3] ESTIMATION OF ORDERED POISSON PARAMETERS
    KUSHARY, D
    COHEN, A
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1991, 53 : 334 - 356
  • [4] On the Estimation of Parameters of Poisson Processes
    孙万龙
    数学进展, 1990, (02) : 252 - 253
  • [5] Parameter estimation for multivariate mixed Poisson distributions
    Chatelain, Florent
    Ferrari, Andre
    Tourneret, Jean-Yves
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 3135 - 3138
  • [6] Estimation of Parameters of a Compound Poisson Process
    P. N. Sapozhnikov
    Journal of Mathematical Sciences, 2004, 119 (3) : 307 - 314
  • [7] Composite likelihood estimation for multivariate mixed poisson distributions
    Chatelain, Florent
    Tourneret, Jean-Yves
    2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 39 - 44
  • [8] Estimation of the parameters of multivariate stable distributions
    Sathe, Aastha M.
    Upadhye, N. S.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 5897 - 5914
  • [9] SEMIPARAMETRIC ESTIMATION OF THE PARAMETERS OF MULTIVARIATE COPULAS
    Liebscher, Eckhard
    KYBERNETIKA, 2009, 45 (06) : 972 - 991
  • [10] On the Estimation of the Parameters of Multivariate Stable Distributions
    Lab. de Statistique et Probabilites, Univ. des Sci. et Technol. de Lille, F-59655 Villeneuve d'Ascq, France
    不详
    不详
    Acta Appl Math, 1-3 (107-124):