An efficient access method for multimodal video retrieval

被引:0
|
作者
Sperandio, Ricardo C. [1 ]
Patrocinio, Zenilton K. G., Jr. [1 ]
de Paula, Hugo B. [1 ]
Guimaraes, Silvio J. F. [1 ]
机构
[1] Pontificia Univ Catolica Minas Gerais PUC Minas, Belo Horizonte, MG, Brazil
关键词
Content-based video retrieval; Metric access methods; Multimodal video retrieval; Multimedia database; FEATURE INDEX STRUCTURE;
D O I
10.1007/s11042-014-1917-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the Slim (2) -tree, an efficient and effective content-based video retrieval technique allowing the use of multiple modalities within a single index structure. Slim (2) -tree is capable of dealing with different distance measures for the modalities and can perform both multimodal and unimodal searches using the same tree structure. Experimental studies on a large real dataset show the video similarity search performance of the proposed technique. Additionally, we present experiments comparing our method against state-of-the-art of multimodal solutions. Comparative test results demonstrate that our technique improves the performance of video similarity queries.
引用
收藏
页码:1357 / 1375
页数:19
相关论文
共 50 条
  • [1] An efficient access method for multimodal video retrieval
    Ricardo C. Sperandio
    Zenilton K. G. Patrocínio
    Hugo B. de Paula
    Silvio J. F. Guimarães
    Multimedia Tools and Applications, 2015, 74 : 1357 - 1375
  • [2] An Efficient Multimodal Aggregation Network for Video-Text Retrieval
    Liu, Zhi
    Zhao, Fangyuan
    Zhang, Mengmeng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (10) : 1825 - 1828
  • [3] Multimodal Video Retrieval and Multimodal Language Modelling
    Wang, Hui
    Kittler, Josef
    Gales, Mark
    Cooper, Rob
    Mulvenna, Maurice
    Ng, Wing
    Hua, Yang
    Gault, Richard
    Haider, Abbas
    Wu, Guanfeng
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 1345 - 1355
  • [4] Multimodal search for effective video retrieval
    Natsev, Apostol
    IMAGE AND VIDEO RETRIEVAL, PROCEEDINGS, 2006, 4071 : 525 - 528
  • [5] Searching the video: An efficient indexing method for video retrieval in peer to peer network
    Hsiao, Ming-Ho
    Tsai, Wen-Jiin
    Lee, Suh-Yin
    ADVANCES IN MULTIMEDIA MODELING, PT 2, 2007, 4352 : 175 - +
  • [6] Multimodal video retrieval with CLIP: a user study
    Tayfun Alpay
    Sven Magg
    Philipp Broze
    Daniel Speck
    Information Retrieval Journal, 2023, 26
  • [7] AdaCLIP: Towards Pragmatic Multimodal Video Retrieval
    Hu, Zhiming
    Ye, Angela Ning
    Khorasgani, Salar Hosseini
    Mohomed, Iqbal
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5623 - 5633
  • [8] Multimodal video retrieval with CLIP: a user study
    Alpay, Tayfun
    Magg, Sven
    Broze, Philipp
    Speck, Daniel
    INFORMATION RETRIEVAL JOURNAL, 2023, 26 (1-2):
  • [9] Multimodal Video Retrieval with the 2017 IMOTION System
    Rossetto, Luca
    Giangreco, Ivan
    Tanase, Claudiu
    Schuldt, Heiko
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR'17), 2017, : 457 - 460
  • [10] MDMMT: Multidomain Multimodal Transformer for Video Retrieval
    Dzabraev, Maksim
    Kalashnikov, Maksim
    Komkov, Stepan
    Petiushko, Aleksandr
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 3349 - 3358