Fullerene C60 as stabiliser for acrylic polymers

被引:38
|
作者
Zuev, VV
Bertini, F
Audisio, G
机构
[1] Russian Acad Sci, Inst Macromol Cpds, St Petersburg 199004, Russia
[2] Tech Univ, St Petersburg State Inst Technol, Dept Chem Phys, St Petersburg 190013, Russia
[3] CNR, Ist Studio Macromol, I-20133 Milan, Italy
关键词
poly-n-alkyl acrylates; poly-n-alkyl methacrylates; fullerene C-60; stabiliser; pyrolysis-gas chromatography; thermal degradation mechanism;
D O I
10.1016/j.polymdegradstab.2005.02.011
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The influence of fullerene C-60 additives on thermal behaviour and thermodegradation of poly-n-alkyl acrylates, from butyl to heptyl, and of corresponding polymethacrylates was investigated by thermogravimetry in dynamical conditions and pyrolysis/gas chromatography in isothermal conditions at 400-650 degrees C. The fullerene is a well-known efficient acceptor of radicals and its presence influences the thermal degradation of acrylic polymers, shifting the decomposition process from a radical pathway to a non-radical mechanism. For poly-n-alkyl acrylates the addition of fullerene leads to increase in the yields of olefin and alcohol, degradation products coming from non-radical pathways. On the other hand, the yields of the pyrolysis products deriving from the random main-chain scission, i.e. monomer, dimer, saturated diester, trimer, corresponding acetate and methacrylate, decrease. The recorded temperatures of maximum weight loss (obtained by thermogravimetric experiments) are slightly increased by the presence of fullerene. The effect of fullerene is more noticeable in the thermal behaviour of poly-n-alkyl methacrylates, in fact the enhancements of the temperature of maximum weight loss are 19-25 degrees C. The mixtures containing fullerene give rise to a marked decrease of the monomer yield and, at the same time, an increase of olefin and methacrylic acid amounts. The fullerene acts as radical acceptor suppressing the unzipping process and favouring the non-radical side-chain reactions. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:28 / 33
页数:6
相关论文
共 50 条
  • [1] C60 fullerene polymers
    Wood, RA
    Lewis, MH
    Lees, MR
    Bennington, SM
    Cain, MG
    Kitamura, N
    NANOSTRUCTURED MATERIALS AND COATINGS FOR BIOMEDICAL AND SENSOR APPLICATIONS, 2003, 102 : 239 - 248
  • [2] Effect of fullerene C60 on thermal degradation of fullerene-containing polymers and blends of polymers with fullerene C60
    Shibaev, LA
    Antonova, IA
    Vinogradova, LV
    Ginzburg, BM
    Zgonnik, VN
    Melenevskaya, EY
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 1998, 71 (05) : 862 - 868
  • [3] Interaction of polymers with fullerene C60
    E. V. Anufrieva
    M. G. Krakovyak
    T. D. Anan’eva
    T. N. Nekrasova
    R. Yu. Smyslov
    Physics of the Solid State, 2002, 44 : 461 - 462
  • [4] Interaction of polymers with fullerene C60
    Anufrieva, EV
    Krakovyak, MG
    Anan'eva, TD
    Nekrasova, TN
    Smyslov, RY
    PHYSICS OF THE SOLID STATE, 2002, 44 (03) : 461 - 462
  • [5] Fullerene C60 as an antioxidant for polymers
    Zeinalov, EB
    Kossmehl, G
    POLYMER DEGRADATION AND STABILITY, 2001, 71 (02) : 197 - 202
  • [6] Chain Fullerene C60=C=C60=C=C60: Possible Way to All-Carbon Polymers
    Meng, Huan
    Sun, Baoyun
    Ren, Tongxiang
    Yuan, Hui
    Xing, Gengmei
    Wang, Shukuan
    Chen, Zhenling
    Qu, Li
    Zhang, Chengcheng
    Zhao, Yuliang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (02) : 1210 - 1213
  • [7] Controlled grafting of polymers onto fullerene C60
    Mathis, C.
    Vide: Science, Technique et Applications, 2001, 2 4 (300): : 278 - 287
  • [8] Controlled grafting of polymers onto fullerene C60
    Mathis, C
    VIDE-SCIENCE TECHNIQUE ET APPLICATIONS, 2001, 56 (300): : 278 - +
  • [9] Dispersed state of C60 fullerene in some polymers
    Bogdanov, A. A.
    Pozdnyakov, A. O.
    TECHNICAL PHYSICS LETTERS, 2016, 42 (01) : 102 - 104
  • [10] Dispersed state of C60 fullerene in some polymers
    A. A. Bogdanov
    A. O. Pozdnyakov
    Technical Physics Letters, 2016, 42 : 102 - 104