Bounding the number of zeros of certain Abelian integrals

被引:75
|
作者
Manosas, F. [2 ]
Villadelprat, J. [1 ]
机构
[1] Univ Barcelona, Dept Matemat Aplicada & Anal, Barcelona, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
Abelian integral; Chebyshev system; Wronskian; Hamiltonian perturbation; Limit cycle; LIMIT-CYCLES; PERTURBATIONS; SYSTEMS; CENTERS;
D O I
10.1016/j.jde.2011.05.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a criterion that provides an easy sufficient condition in order for any nontrivial linear combination of n Abelian integrals to have at most n + k - 1 zeros counted with multiplicities. This condition involves the functions in the integrand of the Abelian integrals and it can be checked, in many cases, in a purely algebraic way. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1656 / 1669
页数:14
相关论文
共 50 条