Modularity of logarithmic parafermion vertex algebras

被引:15
|
作者
Auger, Jean [1 ]
Creutzig, Thomas [1 ]
Ridout, David [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
Vertex algebras; Conformal field theory; Modular transformations; Parafermions; Coset constructions; Primary; 17B69; Secondary; 13A50; EXTENDED CONFORMAL ALGEBRAS; OPERATOR-ALGEBRAS; VERLINDE FORMULAS; FUSION RULES; INVARIANT REPRESENTATIONS; LIE-ALGEBRAS; FIELD-THEORY; C-2-COFINITENESS; CONSTRUCTIONS; CHARACTERS;
D O I
10.1007/s11005-018-1098-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The parafermionic cosets Ck = Com( H, Lk ( sl2)) are studied for negative admissible levels k, as are certain infinite-order simple current extensions Bk of Ck. Under the assumption that the tensor theory considerations of Huang, Lepowsky and Zhang apply to Ck, irreducible Ck -and Bk-modules are obtained from those of Lk ( sl2). Assuming the validity of a certain Verlinde-type formula likewise gives the Grothendieck fusion rules of these irreducible modules. Notably, there are only finitely many irreducible Bk-modules. The irreducible Ck -and Bk-characters are computed and the latter are shown, when supplemented by pseudotraces, to carry a finite-dimensional representation of the modular group. The natural conjecture then is that the Bk are C2-cofinite vertex operator algebras.
引用
收藏
页码:2543 / 2587
页数:45
相关论文
共 50 条
  • [1] Modularity of logarithmic parafermion vertex algebras
    Jean Auger
    Thomas Creutzig
    David Ridout
    Letters in Mathematical Physics, 2018, 108 : 2543 - 2587
  • [2] Parafermion vertex operator algebras
    Chongying Dong
    Qing Wang
    Frontiers of Mathematics in China, 2011, 6 : 567 - 579
  • [3] Parafermion vertex operator algebras
    Dong, Chongying
    Wang, Qing
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (04) : 567 - 579
  • [4] Representations of the parafermion vertex operator algebras
    Dong, Chongying
    Ren, Li
    ADVANCES IN MATHEMATICS, 2017, 315 : 88 - 101
  • [5] PARAFERMION VERTEX OPERATOR ALGEBRAS AND W-ALGEBRAS
    Arakawa, Tomoyuki
    Lam, Ching Hung
    Yamada, Hiromichi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (06) : 4277 - 4301
  • [6] The structure of parafermion vertex operator algebras
    Dong, Chongying
    Lam, Ching Hung
    Wang, Qing
    Yamada, Hiromichi
    JOURNAL OF ALGEBRA, 2010, 323 (02) : 371 - 381
  • [7] Trace functions of the parafermion vertex operator algebras
    Dong, Chongying
    Kac, Victor
    Ren, Li
    ADVANCES IN MATHEMATICS, 2019, 348 : 1 - 17
  • [8] Automorphism group of parafermion vertex operator algebras
    Wang, Qing
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (01) : 94 - 107
  • [9] Logarithmic Vertex Algebras
    Bakalov, Bojko N.
    Villarreal, Juan J.
    TRANSFORMATION GROUPS, 2022, 29 (4) : 1295 - 1357
  • [10] Generalized vertex algebras generated by parafermion-like vertex operators
    Gao, YC
    Li, HS
    JOURNAL OF ALGEBRA, 2001, 240 (02) : 771 - 807