A GENERAL FRAMEWORK FOR VALIDATED CONTINUATION OF PERIODIC ORBITS IN SYSTEMS OF POLYNOMIAL ODES

被引:8
|
作者
van den Berg, Jan Bouwe [1 ]
Queirolo, Elena [2 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands
[2] Rutgers State Univ, Dept Math, 110 Frelinghusen Rd, Piscataway, NJ 08854 USA
来源
JOURNAL OF COMPUTATIONAL DYNAMICS | 2021年 / 8卷 / 01期
关键词
Validated numerics; periodic orbits; continuation; solution branch; polynomial ODEs; BIFURCATION DIAGRAM; RIGOROUS NUMERICS; EQUATION;
D O I
10.3934/jcd.2021004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a parametrized Newton-Kantorovich approach is applied to continuation of periodic orbits in arbitrary polynomial vector fields. This allows us to rigorously validate numerically computed branches of periodic solutions. We derive the estimates in full generality and present sample continuation proofs obtained using an implementation in Matlab. The presented approach is applicable to any polynomial vector field of any order and dimension. A variety of examples is presented to illustrate the efficacy of the method.
引用
收藏
页码:59 / 97
页数:39
相关论文
共 50 条
  • [1] On periodic orbits of polynomial relay systems
    Jacquemard, Alain
    Pereira, Weber Flavio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 17 (02) : 331 - 347
  • [2] On the continuation of degenerate periodic orbits in Hamiltonian systems
    Meletlidou, E
    Stagika, G
    REGULAR & CHAOTIC DYNAMICS, 2006, 11 (01): : 131 - 138
  • [3] Continuation of periodic orbits in conservative and Hamiltonian systems
    Muñoz-Almaraz, FJ
    Freire, E
    Galán, J
    Doedel, E
    Vanderbauwhede, A
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 181 (1-2) : 1 - 38
  • [4] Continuation of periodic orbits in symmetric Hamiltonian and conservative systems
    Galan-Vioque, J.
    Almaraz, F. J. M.
    Macias, E. F.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (13): : 2705 - 2722
  • [5] Continuation of periodic orbits in symmetric Hamiltonian and conservative systems
    J. Galan-Vioque
    F. J. M. Almaraz
    E. F. Macías
    The European Physical Journal Special Topics, 2014, 223 : 2705 - 2722
  • [6] Examples of localization of periodic orbits of polynomial systems
    Starkov, K
    Coria, LN
    2005 International Conference on Physics and Control (PHYSCON), 2005, : 606 - 609
  • [7] Continuation of Bifurcations of Periodic Orbits for Large-Scale Systems
    Net, M.
    Sanchez, J.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (02): : 674 - 698
  • [8] Continuation of periodic orbits in large-scale dissipative systems
    Sánchez, J
    Net, M
    García-Archilla, B
    Simó, C
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 625 - 630
  • [9] Continuation of relative periodic orbits in a class of triatomic Hamiltonian systems
    James, Guillaume
    Noble, Pascal
    Sire, Yannick
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04): : 1237 - 1264
  • [10] Localization of periodic orbits of polynomial systems by ellipsoidal estimates
    Starkov, KE
    Krishchenko, AP
    CHAOS SOLITONS & FRACTALS, 2005, 23 (03) : 981 - 988