Convergence of a splitting inertial proximal method for monotone operators

被引:243
|
作者
Moudafi, A [1 ]
Oliny, M [1 ]
机构
[1] Univ Antilles Guyane, DSI, GRIMAAG, Schoelcher 97200, Martinique, France
关键词
monotone operators; enlargements; proximal point algorithm; cocoercivity; splitting algorithm; projection; convergence;
D O I
10.1016/S0377-0427(02)00906-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A forward-backward inertial procedure for solving the problem of finding a zero of the sum of two maximal monotone operators is proposed and its convergence is established under a cocoercivity condition with respect to the solution set. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:447 / 454
页数:8
相关论文
共 50 条
  • [1] Convergence of a relaxed inertial proximal algorithm for maximally monotone operators
    Attouch, Hedy
    Cabot, Alexandre
    MATHEMATICAL PROGRAMMING, 2020, 184 (1-2) : 243 - 287
  • [2] Convergence of a relaxed inertial proximal algorithm for maximally monotone operators
    Hedy Attouch
    Alexandre Cabot
    Mathematical Programming, 2020, 184 : 243 - 287
  • [3] Strong convergence of a splitting proximal projection method for the sum of two maximal monotone operators
    Tang, Guo-ji
    Huang, Nan-jing
    OPERATIONS RESEARCH LETTERS, 2012, 40 (05) : 332 - 336
  • [4] Convergence of inertial dynamics and proximal algorithms governed by maximally monotone operators
    Attouch, Hedy
    Peypouquet, Juan
    MATHEMATICAL PROGRAMMING, 2019, 174 (1-2) : 391 - 432
  • [5] Convergence of inertial dynamics and proximal algorithms governed by maximally monotone operators
    Hedy Attouch
    Juan Peypouquet
    Mathematical Programming, 2019, 174 : 391 - 432
  • [6] An inertial projective splitting method for the sum of two maximal monotone operators
    Penton Machado, Majela
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):
  • [7] Strong convergence of a splitting projection method for the sum of maximal monotone operators
    Guo-ji Tang
    Fu-quan Xia
    Optimization Letters, 2014, 8 : 1313 - 1324
  • [8] Strong convergence of a splitting projection method for the sum of maximal monotone operators
    Tang, Guo-ji
    Xia, Fu-quan
    OPTIMIZATION LETTERS, 2014, 8 (04) : 1313 - 1324
  • [9] Inexact Inertial Proximal Algorithm for Maximal Monotone Operators
    Khatibzadeh, Hadi
    Ranjbar, Sajad
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (02): : 133 - 146
  • [10] Strong convergence of a splitting algorithm for treating monotone operators
    Cho, Sun Young
    Qin, Xiaolong
    Wang, Lin
    FIXED POINT THEORY AND APPLICATIONS, 2014,