Shubnikov-de Haas oscillations in a two-dimensional electron gas under subterahertz radiation

被引:12
|
作者
Shi, Q. [1 ]
Martin, P. D. [1 ]
Hatke, A. T. [1 ,2 ]
Zudov, M. A. [1 ]
Watson, J. D. [3 ,4 ]
Gardner, G. C. [4 ,5 ]
Manfra, M. J. [3 ,4 ,5 ,6 ]
Pfeiffer, L. N. [7 ]
West, K. W. [7 ]
机构
[1] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[2] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[3] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[4] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[5] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[6] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[7] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
来源
PHYSICAL REVIEW B | 2015年 / 92卷 / 08期
关键词
INDUCED MAGNETORESISTANCE OSCILLATIONS; CYCLOTRON-RESONANCE; MICROWAVE-RADIATION; RESISTANCE STATES; SYSTEM;
D O I
10.1103/PhysRevB.92.081405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on magnetotransport measurements in a two-dimensional (2D) electron gas subject to subterahertz radiation in the regime where Shubnikov-de Haas oscillations (SdHOs) and microwave-induced resistance oscillations (MIROs) coexist over a wide magnetic field range, spanning several harmonics of the cyclotron resonance. Surprisingly, we find that the SdHO amplitude is modified by the radiation in a nontrivial way, owing to the oscillatory correction which has the same period and phase as MIROs. This finding challenges our current understanding of microwave photoresistance in 2D electron gas, calling for future investigations.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Shubnikov-de Haas oscillations in a nonplanar two-dimensional electron gas
    Gusev, GM
    Quivy, AA
    Leite, JR
    Bykov, AA
    Moshegov, NT
    Kudryashev, VM
    Toropov, AI
    Nastaushev, YV
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1999, 14 (12) : 1114 - 1118
  • [2] Shubnikov-de Haas oscillations in a nonplanar two-dimensional electron gas
    Instituto de Fisica, Universidad de São Paulo, CP 66318, CEP 05315-970, São Paulo, SP, Brazil
    不详
    Semicond Sci Technol, 12 (1114-1118):
  • [3] Optical Shubnikov-de Haas oscillations in two-dimensional electron systems
    Savchenko, M. L.
    Gospodaric, J.
    Shuvaev, A.
    Dmitriev, I. A.
    Dziom, V.
    Dobretsova, A. A.
    Mikhailov, N. N.
    Kvon, Z. D.
    Pimenov, A.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [4] Shubnikov-de Haas oscillations in a two-dimensional electron gas in a spatially random magnetic field
    Mancoff, FB
    Zielinski, LJ
    Marcus, CM
    Campman, K
    Gossard, AC
    PHYSICAL REVIEW B, 1996, 53 (12) : R7599 - R7602
  • [5] Microwave-modulated Shubnikov-de Haas oscillations in a two-dimensional GaN electron gas
    Hang, DR
    Juang, JR
    Huang, TY
    Liang, CT
    Hung, WK
    Chen, YF
    Kim, GH
    Lee, Y
    Lee, JH
    Lee, JH
    Huang, CF
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 22 (1-3): : 578 - 581
  • [6] Anomalous Shubnikov-de Haas oscillations in two-dimensional systems
    Winkler, R
    Papadakis, SJ
    De Poortere, EP
    Lu, JP
    Shayegan, M
    PHYSICA B, 2001, 298 (1-4): : 13 - 17
  • [7] Shubnikov-de Haas oscillations of two-dimensional electron gas in an InAsN/InGaAs single quantum well
    Hang, DR
    Huang, CF
    Hung, WK
    Chang, YH
    Chen, JC
    Yang, HC
    Chen, YF
    Shih, DK
    Chu, TY
    Lin, HH
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2002, 17 (09) : 999 - 1003
  • [8] Enhanced Shubnikov-de Haas Oscillations in High Mobility InAlN/GaN Two-Dimensional Electron Gas
    Karmakar, Chiranjit
    Kaneriya, Rakesh
    Mukherjee, Sudip
    Sinha, Santanu
    Kumar, Punam Pradeep
    Babu, Peram Delli
    Joshi, Utpal S.
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (08) : 6238 - 6245
  • [9] The effect of Zeeman splitting on Shubnikov-de Haas oscillations in two-dimensional systems
    S. A. Tarasenko
    Physics of the Solid State, 2002, 44 : 1769 - 1773
  • [10] The effect of Zeeman splitting on Shubnikov-de Haas oscillations in two-dimensional systems
    Tarasenko, SA
    PHYSICS OF THE SOLID STATE, 2002, 44 (09) : 1769 - 1773