Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models

被引:44
|
作者
Lopez-Cheda, Ana [1 ]
Cao, Ricardo [1 ]
Amalia Jacome, M. [1 ]
Van Keilegom, Ingrid [2 ]
机构
[1] Univ A Coruna, Dept Matemat, La Coruna, Spain
[2] Catholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, Louvain, Belgium
关键词
Survival analysis; Censored data; Local maximum likelihood; Kernel estimation; LONG-TERM SURVIVORS; KAPLAN-MEIER ESTIMATE; PROPORTIONAL HAZARDS; CENSORED-DATA; TRANSFORMATION MODELS; REGRESSION; FRACTION; CANCER; CONSISTENCY;
D O I
10.1016/j.csda.2016.08.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A completely nonparametric method for the estimation of mixture cure models is proposed. A nonparametric estimator of the incidence is extensively studied and a nonparametric estimator of the latency is presented. These estimators, which are based on the Beran estimator of the conditional survival function, are proved to be the local maximum likelihood estimators. An i.i.d. representation is obtained for the nonparametric incidence estimator. As a consequence, an asymptotically optimal bandwidth is found. Moreover, a bootstrap bandwidth selection method for the nonparametric incidence estimator is proposed. The introduced nonparametric estimators are compared with existing semiparametric approaches in a simulation study, in which the performance of the bootstrap bandwidth selector is also assessed. Finally, the method is applied to a database of colorectal cancer from the University Hospital of A Coruna (CHUAC). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:144 / 165
页数:22
相关论文
共 50 条
  • [1] Nonparametric curve estimation and bootstrap bandwidth selection
    Barbeito, Ines
    Cao, Ricardo
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2020, 12 (03)
  • [2] Nonparametric latency estimation for mixture cure models
    Ana López-Cheda
    M. Amalia Jácome
    Ricardo Cao
    TEST, 2017, 26 : 353 - 376
  • [3] Nonparametric latency estimation for mixture cure models
    Lopez-Cheda, Ana
    Amalia Jacome, M.
    Cao, Ricardo
    TEST, 2017, 26 (02) : 353 - 376
  • [4] Smoothed bootstrap bandwidth selection for nonparametric hazard rate estimation
    Barbeito, Ines
    Cao, Ricardo
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (01) : 15 - 37
  • [5] Rejoinder on: Nonparametric estimation in mixture cure models with covariates
    Lopez-Cheda, Ana
    Peng, Yingwei
    Jacome, Maria Amalia
    TEST, 2023, 32 (02) : 513 - 520
  • [6] Rejoinder on: Nonparametric estimation in mixture cure models with covariates
    Ana López-Cheda
    Yingwei Peng
    María Amalia Jácome
    TEST, 2023, 32 : 513 - 520
  • [7] Smoothed bootstrap bandwidth selection in nonparametric density estimation for moving average processes
    Saavedra, A
    Cao, R
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2001, 19 (04) : 555 - 580
  • [8] A nonparametric mixture model for cure rate estimation
    Peng, YW
    Dear, KBG
    BIOMETRICS, 2000, 56 (01) : 237 - 243
  • [9] Consistence of the optimal bandwidth in the case of the bootstrap of nonparametric density estimation
    Mihoubi, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (05): : 489 - 492
  • [10] Bandwidth selection for changepoint estimation in nonparametric regression
    Gijbels, I
    Goderniaux, AC
    TECHNOMETRICS, 2004, 46 (01) : 76 - 86