Research and Application of Improved Clustering Algorithm in Retail Customer Classification

被引:10
|
作者
Fang, Chu [1 ]
Liu, Haiming [2 ]
机构
[1] Zhaoqing Univ, Coll Econ & Management, Zhaoqing 526061, Peoples R China
[2] Nanchang Inst Technol, Business Adm Coll, Nanchang 330099, Jiangxi, Peoples R China
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
clustering; k-means algorithm; customer segmentation; CRM; GENDER-DIFFERENCES; HEDONIC VALUE; UTILITARIAN; INTENTION; PURCHASE; COMMERCE; LOYALTY;
D O I
10.3390/sym13101789
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clustering is a major field in data mining, which is also an important method of data partition or grouping. Clustering has now been applied in various ways to commerce, market analysis, biology, web classification, and so on. Clustering algorithms include the partitioning method, hierarchical clustering as well as density-based, grid-based, model-based, and fuzzy clustering. The K-means algorithm is one of the essential clustering algorithms. It is a kind of clustering algorithm based on the partitioning method. This study's aim was to improve the algorithm based on research, while with regard to its application, the aim was to use the algorithm for customer segmentation. Customer segmentation is an essential element in the enterprise's utilization of CRM. The first part of the paper presents an elaboration of the object of study, its background as well as the goal this article would like to achieve; it also discusses the research the mentality and the overall content. The second part mainly introduces the basic knowledge on clustering and methods for clustering analysis based on the assessment of different algorithms, while identifying its advantages and disadvantages through the comparison of those algorithms. The third part introduces the application of the algorithm, as the study applies clustering technology to customer segmentation. First, the customer value system is built through AHP; customer value is then quantified, and customers are divided into different classifications using clustering technology. The efficient CRM can thus be used according to the different customer classifications. Currently, there are some systems used to evaluate customer value, but none of them can be put into practice efficiently. In order to solve this problem, the concept of continuous symmetry is introduced. It is very important to detect the continuous symmetry of a given problem. It allows for the detection of an observable state whose components are nonlinear functions of the original unobservable state. Thus, we built an evaluating system for customer value, which is in line with the development of the enterprise, using the method of data mining, based on the practical situation of the enterprise and through a series of practical evaluating indexes for customer value. The evaluating system can be used to quantify customer value, to segment the customers, and to build a decision-supporting system for customer value management. The fourth part presents the cure, mainly an analysis of the typical k-means algorithm; this paper proposes two algorithms to improve the k-means algorithm. Improved algorithm A can get the K automatically and can ensure the achievement of the global optimum value to some degree. Improved Algorithm B, which combines the sample technology and the arrangement agglomeration algorithm, is much more efficient than the k-means algorithm. In conclusion, the main findings of the study and further research directions are presented.</p>
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Application research of improved particle swarm algorithm in online trading customer classification
    Li, X., 1600, Asian Network for Scientific Information (12):
  • [2] Research and application on improved fuzzy clustering algorithm
    Yang W.
    Duan J.
    Liu Y.
    He X.
    Wang H.
    Liu Y.
    Journal of Computational and Theoretical Nanoscience, 2016, 13 (07) : 4362 - 4367
  • [3] Research and Application of Subtilized Customer Clustering Algorithm in Power Marketing
    Xiao, Zhanhui
    Feng, Xinyao
    Dang, Li
    Qiu, Ronggong
    He, Shuyun
    Chen, Pengyuan
    Hu, Bo
    Li, Canbing
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017,
  • [4] The Application of Improved BP Algorithm in Customer Classification of Life Insurance
    Bi Xing
    Li Jian
    Huang Feng-wen
    2009 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING (16TH), VOLS I AND II, CONFERENCE PROCEEDINGS, 2009, : 1269 - +
  • [5] Application of Parallel Clustering Algorithm Based on R in Power Customer Classification
    Pan, Sen
    Qiao, Junfeng
    Zhu, Lipeng
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2019, : 165 - 169
  • [6] Application of Improved K-means Clustering Algorithm in Customer Segmentation
    Li, Gang
    INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY II, PTS 1-4, 2013, 411-414 : 1081 - 1084
  • [7] An improved BP neural network algorithm and it's application in customer classification
    Gensheng, Wang
    International Journal of Applied Mathematics and Statistics, 2013, 46 (16): : 111 - 118
  • [8] Mixed Clustering Algorithm and Electricity Customer Classification
    Yang, Shu-xia
    2008 INTERNATIONAL SEMINAR ON FUTURE INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING, PROCEEDINGS, 2008, : 107 - 110
  • [9] Research on customer classification based on fuzzy clustering
    School of Electron and Inf. Eng., Dalian Univ. of Techno, Dalian 116085, China
    不详
    J. Comput. Inf. Syst., 2007, 5 (1971-1976):
  • [10] Application research of improved neural network in customer value classification for logistics enterprises
    Li, Jian-Jun
    Shu, Hui
    Journal of Convergence Information Technology, 2012, 7 (20) : 399 - 404