An 18 gene expression-based score classifier predicts the clinical outcome in stage 4 neuroblastoma

被引:42
|
作者
Formicola, Daniela [1 ,2 ]
Petrosino, Giuseppe [1 ,2 ]
Lasorsa, Vito Alessandro [1 ,2 ]
Pignataro, Piero [1 ,2 ]
Cimmino, Flora [1 ,2 ]
Vetrella, Simona [3 ]
Longo, Luca [4 ]
Tonini, Gian Paolo [5 ]
Oberthuer, Andre [6 ,7 ]
Iolascon, Achille [1 ,2 ]
Fischer, Matthias [6 ,7 ,8 ]
Capasso, Mario [1 ,2 ]
机构
[1] Univ Naples Federico II, Dipartimento Med Mol & Biotecnol Med, I-80145 Naples, Italy
[2] CEINGE Biotecnolgie Avanzate Scarl, Naples, Italy
[3] Santobono Pausilipon Childrens Hosp, Dept Oncol, Naples, Italy
[4] Natl Inst Canc Res, IRCCS AOU San Martino IST, UOC Bioterapie, Genoa, Italy
[5] Univ Padua, Pediat Res Inst, Onco Hematol Dept SDB, Lab Neuroblastoma, Padua, Italy
[6] Univ Cologne, Childrens Hosp, Dept Pediat Oncol & Hematol, D-50931 Cologne, Germany
[7] Univ Cologne, Childrens Hosp, Ctr Mol Med Cologne, D-50931 Cologne, Germany
[8] Max Planck Inst Metab Res, Cologne, Germany
来源
关键词
Neuroblastoma; Risk score; Prognosis; Microarray; METASTATIC NEUROBLASTOMA; NERVOUS-SYSTEM; MICROARRAY; SIGNATURE; CANCER; CELLS; RISK; DIFFERENTIATION; PROLIFERATION; AMPLIFICATION;
D O I
10.1186/s12967-016-0896-7
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: The prognosis of children with metastatic stage 4 neuroblastoma (NB) has remained poor in the past decade. Patients and methods: Using microarray analyses of 342 primary tumors, we here developed and validated an easy to use gene expression-based risk score including 18 genes, which can robustly predict the outcome of stage 4 patients. Results: This classifier was a significant predictor of overall survival in two independent validation cohorts [ cohort 1 (n = 214): P = 6.3 x 10(-5); cohort 2 (n = 27): P = 3.1 x 10(-2)]. The prognostic value of the risk score was validated by multivariate analysis including the established markers age and MYCN status (P = 0.027). In the pooled validation cohorts (n = 241), integration of the risk score with the age and/or MYCN status identified subgroups with significantly differing overall survival (ranging from 35 to 100 %). Conclusion: Together, the 18-gene risk score classifier can identify patients with stage 4 NB with favorable outcome and may therefore improve risk assessment and treatment stratification of NB patients with disseminated disease.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] An 18 gene expression-based score classifier predicts the clinical outcome in stage 4 neuroblastoma
    Daniela Formicola
    Giuseppe Petrosino
    Vito Alessandro Lasorsa
    Piero Pignataro
    Flora Cimmino
    Simona Vetrella
    Luca Longo
    Gian Paolo Tonini
    André Oberthuer
    Achille Iolascon
    Matthias Fischer
    Mario Capasso
    Journal of Translational Medicine, 14
  • [2] A four-gene expression-based signature predicts the clinical outcome of melanoma
    Sun, Liping
    Li, Ping
    Ren, He
    Liu, Gang
    Sun, Lining
    JOURNAL OF BUON, 2019, 24 (05): : 2161 - 2167
  • [3] A GENE SIGNATURE PREDICTS THE CLINICAL OUTCOME IN STAGE 4 NEUROBLASTOMA ACROSS INDEPENDENT DATA SETS
    Capasso, M.
    Petrosino, G.
    Coco, S.
    Tonini, G. P.
    Oberthuer, A.
    Cimmino, F.
    Iolascon, A.
    PEDIATRIC BLOOD & CANCER, 2013, 60 : 24 - 24
  • [4] GABAergic system gene expression predicts clinical outcome in patients with neuroblastoma
    Roberts, SS
    Mori, M
    Pattee, P
    Lapidus, J
    Mathews, R
    O'Malley, JP
    Hsieh, YC
    Turner, MA
    Wang, ZH
    Tian, Q
    Rodland, MJ
    Reynolds, CP
    Seeger, RC
    Nagalla, SR
    JOURNAL OF CLINICAL ONCOLOGY, 2004, 22 (20) : 4127 - 4134
  • [5] Prognostic Impact of Gene Expression-Based Classification for Neuroblastoma
    Oberthuer, Andre
    Hero, Barbara
    Berthold, Frank
    Juraeva, Dilafruz
    Faldum, Andreas
    Kahlert, Yvonne
    Asgharzadeh, Shahab
    Seeger, Robert
    Scaruffi, Paola
    Tonini, Gian Paolo
    Janoueix-Lerosey, Isabelle
    Delattre, Olivier
    Schleiermacher, Gudrun
    Vandesompele, Jo
    Vermeulen, Joelle
    Speleman, Frank
    Noguera, Rosa
    Piqueras, Marta
    Benard, Jean
    Valent, Alexander
    Avigad, Smadar
    Yaniv, Isaac
    Weber, Axel
    Christiansen, Holger
    Grundy, Richard G.
    Schardt, Katharina
    Schwab, Manfred
    Eils, Roland
    Warnat, Patrick
    Kaderali, Lars
    Simon, Thorsten
    DeCarolis, Boris
    Theissen, Jessica
    Westermann, Frank
    Brors, Benedikt
    Fischer, Matthias
    JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (21) : 3506 - 3515
  • [6] Identification of a 20-Gene Expression-Based Risk Score as a Predictor of Clinical Outcome in Chronic Lymphocytic Leukemia Patients
    Samra, Elias Bou
    Klein, Bernard
    Commes, Therese
    Moreaux, Jerome
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [7] A clinically applicable gene expression-based score predicts resistance to induction treatment in acute myeloid leukemia
    Moser, Christian
    Jurinovic, Vindi
    Sagebiel-Kohler, Sabine
    Ksienzyk, Bianka
    Batcha, Aarif M. N.
    Dufour, Annika
    Schneider, Stephanie
    Rothenberg-Thurley, Maja
    Sauerland, Cristina M.
    Gorlich, Dennis
    Berdel, Wolfgang E.
    Krug, Utz
    Mansmann, Ulrich
    Hiddemann, Wolfgang
    Braess, Jan
    Spiekermann, Karsten
    Greif, Philipp A.
    Vosberg, Sebastian
    Metzeler, Klaus H.
    Kumbrink, Joerg
    Herold, Tobias
    BLOOD ADVANCES, 2021, 5 (22) : 4752 - 4761
  • [8] A diagnostic classifier for gene expression-based identification of early Lyme disease
    Servellita, Venice
    Bouquet, Jerome
    Rebman, Alison
    Yang, Ting
    Samayoa, Erik
    Miller, Steve
    Stone, Mars
    Lanteri, Marion
    Busch, Michael
    Tang, Patrick
    Morshed, Muhammad
    Soloski, Mark J.
    Aucott, John
    Chiu, Charles Y.
    COMMUNICATIONS MEDICINE, 2022, 2 (01):
  • [9] Gene expression-based classification improves risk estimation of neuroblastoma patients
    Oberthuer, A.
    Hero, B.
    Juraeva, D.
    Faldum, A.
    Kahlert, Y.
    Asgharzadeh, S.
    Seeger, R.
    Scaruffi, P.
    Tonini, G. P.
    Janoueix-Lerosey, I
    Delattre, O.
    Schleiermacher, G.
    Vandesompele, J.
    Vermeulen, J.
    Speleman, F.
    Noguera, R.
    Piqueras, M.
    Benard, J.
    Valent, A.
    Avigad, S.
    Yaniv, I
    Weber, A.
    Christiansen, H.
    Grundy, R. G.
    Schardt, K.
    Schwab, M.
    Eils, R.
    Warnat, P.
    Kaderali, L.
    Simon, T.
    DeCarolis, B.
    Theissen, J.
    Westermann, F.
    Brors, B.
    Berthold, F.
    Fischer, M.
    KLINISCHE PADIATRIE, 2010, 222 (03): : 221 - 221
  • [10] A diagnostic classifier for gene expression-based identification of early Lyme disease
    Venice Servellita
    Jerome Bouquet
    Alison Rebman
    Ting Yang
    Erik Samayoa
    Steve Miller
    Mars Stone
    Marion Lanteri
    Michael Busch
    Patrick Tang
    Muhammad Morshed
    Mark J. Soloski
    John Aucott
    Charles Y. Chiu
    Communications Medicine, 2