Criteria for monogenicity of Clifford algebra-valued functions on fractal domains

被引:1
|
作者
Abreu-Blaya, Ricardo [1 ]
Bory-Reyes, Juan [2 ]
机构
[1] Univ Holguin, Fac Informat & Matemat, Holguin, Cuba
[2] Univ Oriente, Dept Matemat, Santiago De Cuba, Cuba
关键词
Clifford analysis; Cauchy-Riemann operator; Cauchy transform; CAUCHY TRANSFORM;
D O I
10.1007/s00013-010-0140-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that Omega is a bounded domain with fractal boundary Gamma in R(n+1) and let R(0,n) be the real Clifford algebra constructed over the quadratic space R(n). Furthermore, let U be a R(0,n)-valued function harmonic in Omega and Holder-continuous up to Gamma. By using a new Clifford Cauchy transform for Jordan domains in R(n+1) with fractal boundaries, we give necessary and sufficient conditions for the monogenicity of U in terms of its boundary value u = U|(Gamma). As a consequence, the results of Abreu Blaya et al. (Proceedings of the 6th International ISAAC Congress Ankara, 167-174, World Scientific) are extended, which require Gamma to be Ahlfors-David regular.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 50 条