A NEW LITTLEWOOD-RICHARDSON RULE FOR SCHUR P-FUNCTIONS

被引:0
|
作者
Cho, Soojin [1 ]
机构
[1] Ajou Univ, Dept Math, Suwon 443749, South Korea
关键词
Schur P-functions; shifted tableaux; semistandard decomposition tableaux; shifted Littlewood-Richardson coefficients; SHIFTED TABLEAUX; HONEYCOMB MODEL;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new description of shifted Littlewood-Richardson coefficients is given in terms of semistandard decomposition tableaux which were recently introduced by L. Serrano. We also show that the set of semistandard decomposition tableaux is invariant under the action of Lascoux-Schutzenberger involution, providing a combinatorial proof of the symmetry of Schur P-functions. We find counterexamples to the conjecture made by L. Serrano on skew Schur P-functions, proving the falsity of the conjecture. Many combinatorial properties of semistandard decomposition tableaux are also shown.
引用
收藏
页码:939 / 972
页数:34
相关论文
共 50 条
  • [1] A Littlewood-Richardson rule for factorial Schur functions
    Molev, AI
    Sagan, BE
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (11) : 4429 - 4443
  • [2] Littlewood-Richardson rule for generalized Schur Q-functions
    Huang, Fang
    Chu, Yanjun
    Li, Chuanzhong
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (06) : 3143 - 3165
  • [3] Littlewood-Richardson rule for generalized Schur Q-functions
    Fang Huang
    Yanjun Chu
    Chuanzhong Li
    Algebras and Representation Theory, 2023, 26 : 3143 - 3165
  • [4] Reduced Schur functions and the Littlewood-Richardson coefficients
    Ariki, S
    Nakajima, T
    Yamada, HF
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 : 396 - 406
  • [5] HOOK SCHUR FUNCTIONS FOR LITTLEWOOD-RICHARDSON COEFFICIENTS
    Shader, Chanyoung Lee
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2011, 21 (02): : 179 - 202
  • [6] Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions
    Bessenrodt, Christine
    Tewari, Vasu
    van Willigenburg, Stephanie
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 137 : 179 - 206
  • [7] A geometric Littlewood-Richardson rule
    Vakil, Ravi
    ANNALS OF MATHEMATICS, 2006, 164 (02) : 371 - 422
  • [8] An algorithmic Littlewood-Richardson rule
    Ricky Ini Liu
    Journal of Algebraic Combinatorics, 2010, 31 : 253 - 266
  • [9] REFINEMENTS OF THE LITTLEWOOD-RICHARDSON RULE
    Haglund, J.
    Luoto, K.
    Mason, S.
    van Willigenburg, S.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (03) : 1665 - 1686
  • [10] On applying the Littlewood-Richardson rule
    Sviridova I.Y.
    Journal of Mathematical Sciences, 2008, 152 (4) : 584 - 594