Embryo assessment at the click of a button is now possible: evaluation of a deep-learning algorithm integrated directly with the time-lapse platform

被引:0
|
作者
Bori, L. [1 ]
Esteve, R. [2 ]
Meseguer, F. [1 ]
Alegre, L. [2 ]
Remohi, J. [3 ]
Meseguer, M. [2 ]
机构
[1] IVI Fdn, Innovat, Valencia, Spain
[2] IVIRMA Global, IVF Lab, Valencia, Spain
[3] IVIRMA Global, Obstet & Gynecol, Valencia, Spain
关键词
D O I
暂无
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
P-208
引用
收藏
页码:I289 / I289
页数:1
相关论文
共 17 条
  • [1] Deep learning for embryo evaluation using time-lapse: a systematic review of diagnostic test accuracy
    Berman, Aya
    Anteby, Roi
    Efros, Orly
    Klang, Eyal
    Soffer, Shelly
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2023, 229 (05) : 490 - 501
  • [2] Comparing performance between clinics of an embryo evaluation algorithm based on time-lapse images and machine learning
    Johansen, Martin N.
    Parner, Erik T.
    Kragh, Mikkel F.
    Kato, Keiichi
    Ueno, Satoshi
    Palm, Stefan
    Kernbach, Manuel
    Balaban, Basak
    Keles, Ipek
    Gabrielsen, Anette V.
    Iversen, Lea H.
    Berntsen, Jorgen
    JOURNAL OF ASSISTED REPRODUCTION AND GENETICS, 2023, 40 (09) : 2129 - 2137
  • [3] Comparing performance between clinics of an embryo evaluation algorithm based on time-lapse images and machine learning
    Martin N. Johansen
    Erik T. Parner
    Mikkel F. Kragh
    Keiichi Kato
    Satoshi Ueno
    Stefan Palm
    Manuel Kernbach
    Başak Balaban
    İpek Keleş
    Anette V. Gabrielsen
    Lea H. Iversen
    Jørgen Berntsen
    Journal of Assisted Reproduction and Genetics, 2023, 40 : 2129 - 2137
  • [4] DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy
    Zargari, Abolfazl
    Lodewijk, Gerrald A.
    Mashhadi, Najmeh
    Cook, Nathan
    Neudorf, Celine W.
    Araghbidikashani, Kimiasadat
    Hays, Robert
    Kozuki, Sayaka
    Rubio, Stefany
    Hrabeta-Robinson, Eva
    Brooks, Angela
    Hinck, Lindsay
    Shariati, S. Ali
    CELL REPORTS METHODS, 2023, 3 (06):
  • [5] Uncertainty Quantification Based on Deep-Learning Approach Integrating Time-Lapse Seismic Data for Geological Carbon Storage
    Kim, Hyunmin
    Shin, Hyundon
    Jo, Honggeun
    Lithosphere, 2024, 2024 (04) : 1 - 18
  • [6] A deep learning model using time-lapse imaging data to predict successful clinical pregnancy and embryo euploidy
    Maekawa, R.
    Tanaka, A.
    Kuramoto, T.
    Sugino, N.
    HUMAN REPRODUCTION, 2024, 39 : I257 - I257
  • [7] Development of an automated two pronuclei detection system on time-lapse embryo images using deep learning techniques
    Fukunaga, Noritaka
    Sanami, Sho
    Kitasaka, Hiroya
    Tsuzuki, Yuji
    Watanabe, Hiroyuki
    Kida, Yuta
    Takeda, Seiji
    Asada, Yoshimasa
    REPRODUCTIVE MEDICINE AND BIOLOGY, 2020, 19 (03) : 286 - 294
  • [8] Finding an optimal algorithm for predicting human embryo development using deep learning and high-resolution time-lapse cinematography (hR-TLC)
    Mimura, M.
    Tamoto, R.
    Sato, M.
    Shimura, T.
    Yumoto, K.
    Mio, Y.
    HUMAN REPRODUCTION, 2019, 34 : 226 - 226
  • [9] Comparison between two deep-learning based artificial intelligence models for time-lapse imaging: study on 814 blastocysts in fresh SET
    Garcia, J. Jaldo
    Trigo, C. Gonzalez
    Marti, B. Gonzalez
    Entezami, F.
    HUMAN REPRODUCTION, 2024, 39 : I310 - I310
  • [10] The Kidscore™ D5 algorithm as an additional tool to morphological assessment and PGT-A in embryo selection: a time-lapse study
    Gazzo, Eduardo
    Pena, Fernando
    Valdez, Federico
    Chung, Arturo
    Bonomini, Claudio
    Ascenzo, Mario
    Velit, Marcelo
    Escudero, Ernesto
    JORNAL BRASILEIRO DE REPRODUCAO ASSISTIDA, 2020, 24 (01): : 55 - 60