Geometry, Fields, and Spacetime

被引:1
|
作者
Binkoski, James [1 ]
机构
[1] Dartmouth Coll, Dept Philosophy, Hanover, NH 03755 USA
来源
关键词
TIME; ABSOLUTE;
D O I
10.1093/bjps/axy002
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
I present an argument against a relational theory of spacetime that regards spacetime as a 'structural quality of the field'. The argument takes the form of a trilemma. To make the argument, I focus on relativistic worlds in which there exist just two fields, an electromagnetic field and a gravitational field. Then there are three options: either spacetime is a structural quality of each field separately, both fields together, or one field but not the other. I argue that the first option founders on a problem of geometric coordination and that the second and third options collapse into substantivalism. In particular, on the third option it becomes clear that the relationalist's path to Leibniz equivalence is no simpler or more straightforward than the substantivalist's.
引用
收藏
页码:1097 / 1117
页数:21
相关论文
共 50 条
  • [1] Gravitational scattering of quantum fields and spacetime geometry
    Uno, T
    Munoz, G
    PHYSICS LETTERS A, 1996, 223 (03) : 137 - 144
  • [2] Gravitational scattering of quantum fields and spacetime geometry
    Uno, Takashi
    Muñoz, Gerardo
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 224 (03): : 137 - 144
  • [3] IS THERE A SPACETIME GEOMETRY
    SONEGO, S
    PHYSICS LETTERS A, 1995, 208 (1-2) : 1 - 7
  • [4] Geometry and spacetime
    Yau, ST
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 : 197 - 204
  • [5] GEOMETRY OF SPACETIME AND FINSLER GEOMETRY
    Tavakol, Reza
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (8-9): : 1678 - 1685
  • [6] On the architecture of spacetime geometry
    Bianchi, Eugenio
    Myers, Robert C.
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (21)
  • [7] Effective spacetime geometry
    Knox, Eleanor
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2013, 44 (03): : 346 - 356
  • [8] Spacetime and the geometry behind it
    Yau S.-T.
    Milan Journal of Mathematics, 2006, 74 (1) : 339 - 356
  • [9] Spacetime and Euclidean geometry
    Dieter Brill
    Ted Jacobson
    General Relativity and Gravitation, 2006, 38 : 643 - 651
  • [10] On the determination of spacetime geometry
    Drivotin, O. I.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2022, 18 (03): : 316 - 327