Modeling of fluid-solid interfaces by the Discrete Wave Number

被引:4
|
作者
Flores-Mendez, E. [1 ]
Carbaja-Romero, M. [2 ]
Ortiz-Aleman, C. [3 ]
Rodriguez-Sanchez, J. E. [3 ]
Rodriguez-Castellanos, A. [3 ]
机构
[1] Inst Politecn Nacl, Unidad Profes ESIA Zacatenco, Mexico City 02250, DF, Mexico
[2] Inst Politecn Nacl, Unidad Profes ESIME Azcapotzalco, Mexico City 02250, DF, Mexico
[3] Inst Mexicano Petr, Mexico City 07730, DF, Mexico
来源
KOVOVE MATERIALY-METALLIC MATERIALS | 2012年 / 50卷 / 04期
关键词
interface waves; Scholte's waves; elastic waves; fluid-solid interface; Discrete Wave Number method (DWN); PROPAGATION; STONELEY; SURFACE;
D O I
10.4149/km_2012_4_221
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work shows the wave propagation in fluid-solid interfaces due to dynamic excitations. The interface connects an acoustic medium (fluid) and a solid one, a wide range of elastic solid materials is considered. By means of an analysis of diffracted waves in a fluid, it is possible to deduce the mechanical characteristics of the solid medium, specifically, its wave propagation velocity. For this purpose, the Discrete Wave Number method (DWN) is formulated to deal with this problem. This method usually models ground motions, where the wave radiated from a source is expressed as the wave number integration. The validation was performed by means of results comparison with published research determined by Boundary Elements Method. Firstly, spectra of pressures for each solid material considered are displayed. Then, the Fast Fourier Transform algorithm to obtain results in the time domain is applied, where the emergence of Scholte's interface waves and the amount of energy that they carry are evinced.
引用
收藏
页码:221 / 227
页数:7
相关论文
共 50 条
  • [1] Wave propagation across fluid-solid interfaces: a grid method approach
    Zhang, JF
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2004, 159 (01) : 240 - 252
  • [2] Numerical modeling to study fluid-solid interfaces under dynamic excitations
    Flores-Mendez, E.
    Carbajal-Romero, M.
    Flores-Guzman, N.
    Nunez-Farfan, J.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2013, 29 (03): : 146 - 151
  • [3] Bounded inhomogeneous wave profiles for increased surface wave excitation efficiency at fluid-solid interfaces
    Rhoads, Jeffrey F. (jfrhoads@purdue.edu), 1600, Acoustical Society of America (141):
  • [4] Bounded inhomogeneous wave profiles for increased surface wave excitation efficiency at fluid-solid interfaces
    Woods, Daniel C.
    Bolton, J. Stuart
    Rhoads, Jeffrey F.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2017, 141 (04): : 2779 - 2787
  • [5] Molecular simulation of fluid-solid interfaces at nanoscale
    Ould-Kaddour, F.
    Levesque, D.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (22):
  • [6] BREWSTER-ANGLE FOR FLUID-SOLID INTERFACES
    SOTIROPOULOS, DA
    JOURNAL OF SOUND AND VIBRATION, 1995, 185 (03) : 501 - 506
  • [7] Scattering by cracks beneath fluid-solid interfaces
    Craster, RV
    JOURNAL OF SOUND AND VIBRATION, 1998, 209 (02) : 343 - 372
  • [8] Prediction of Kapitza resistance at fluid-solid interfaces
    Alosious, Sobin
    Kannam, Sridhar Kumar
    Sathian, Sarith P.
    Todd, B. D.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (19):
  • [9] Finite-difference modeling of wave propagation in a fluid-solid configuration
    van Vossen, R
    Robertsson, JOA
    Chapman, CH
    GEOPHYSICS, 2002, 67 (02) : 618 - 624
  • [10] Effect of a fluid wedge on the wave propagation along a fluid-solid interface: A Modeling approach
    Dao, C. M.
    Das, S.
    Banerjee, S.
    Kundu, T.
    STRUCTURAL HEALTH MONITORING 2007: QUANTIFICATION, VALIDATION, AND IMPLEMENTATION, VOLS 1 AND 2, 2007, : 919 - 926