A priori and a posteriori estimates of the stabilized finite element methods for the incompressible flow with slip boundary conditions arising in arteriosclerosis

被引:1
|
作者
Li, Jian [1 ]
Zheng, Haibiao [2 ]
Zou, Qingsong [3 ,4 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Arts & Sci, Dept Math, Xian, Shaanxi, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab Pure Math & Math Practice, Sch Math Sci, Shanghai, Peoples R China
[3] Sun Yat Sen Univ, Sch Data & Computat Sci, Guangzhou, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou, Guangdong, Peoples R China
关键词
Stokes equations; Slip boundary condition; Variational inequality; Finite element methods; A priori error estimates; A posteriori error estimates; Numerical experiments; NAVIER-STOKES EQUATIONS; LOCAL GAUSS INTEGRATIONS; PRESSURE PROJECTION; ERROR ESTIMATORS; VOLUME METHODS; LEAK; APPROXIMATIONS; REGULARITY;
D O I
10.1186/s13662-019-2312-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop the lower order stabilized finite element methods for the incompressible flow with the slip boundary conditions of friction type whose weak solution satisfies a variational inequality. The H-1-norm for the velocity and the L-2-norm for the pressure decrease with optimal convergence order. The reliable and efficient a posteriori error estimates are also derived. Finally, numerical experiments are presented to validate the theoretical results.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A priori and a posteriori estimates of the stabilized finite element methods for the incompressible flow with slip boundary conditions arising in arteriosclerosis
    Jian Li
    Haibiao Zheng
    Qingsong Zou
    Advances in Difference Equations, 2019
  • [2] A priori and a posteriori estimates of stabilized mixed finite volume methods for the incompressible flow arising in arteriosclerosis
    Li, Jian
    Jing, Feifei
    Chen, Zhangxin
    Lin, Xiaolin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 363 (363) : 35 - 52
  • [3] Robust a posteriori error estimates for stabilized finite element methods
    Tobiska, L.
    Verfuerth, R.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (04) : 1652 - 1671
  • [4] Stabilized Finite Element Methods for a Blood Flow Model of Arteriosclerosis
    Jing, Feifei
    Li, Jian
    Chen, Zhangxin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (06) : 2063 - 2079
  • [5] DISCONTINUOUS FINITE ELEMENT METHODS FOR INTERFACE PROBLEMS: ROBUST A PRIORI AND A POSTERIORI ERROR ESTIMATES
    Cai, Zhiqiang
    He, Cuiyu
    Zhang, Shun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) : 400 - 418
  • [6] Finite element approximation to optimal Dirichlet boundary control problem: A priori and a posteriori error estimates
    Du, Shaohong
    He, Xiaoxia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 131 : 14 - 25
  • [7] Posteriori error estimates for adaptive boundary element methods
    Jin, Chaosong
    Chongqing Jianzhu Daxue Xuebao/Journal of Chongqing Jianzhu University, 2000, 22 (06): : 16 - 19
  • [8] Local a posteriori error estimates for boundary element methods
    Schulz, H
    Wendland, WL
    ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 1998, : 564 - 571
  • [9] Functional a posteriori error estimates for boundary element methods
    Stefan Kurz
    Dirk Pauly
    Dirk Praetorius
    Sergey Repin
    Daniel Sebastian
    Numerische Mathematik, 2021, 147 : 937 - 966
  • [10] Functional a posteriori error estimates for boundary element methods
    Kurz, Stefan
    Pauly, Dirk
    Praetorius, Dirk
    Repin, Sergey
    Sebastian, Daniel
    NUMERISCHE MATHEMATIK, 2021, 147 (04) : 937 - 966