Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet

被引:26
|
作者
Donat-Magnin, Marion [1 ]
Jourdain, Nicolas C. [1 ]
Kittel, Christoph [2 ]
Agosta, Cecile [3 ]
Amory, Charles [1 ,2 ]
Gallee, Hubert [1 ]
Krinner, Gerhard [1 ]
Chekki, Mondher [1 ]
机构
[1] Univ Grenoble Alpes, Inst Geosci Environm IGE, CNRS, IRD,G INP, Grenoble, France
[2] Univ Liege, Geog Dept, SPHERES Res Unit, B-4000 Liege, Belgium
[3] UVSQ Univ Paris Saclay, Lab Sci Climat & Environm, LSCE IPSL, CEA,CNRS, F-91198 Gif Sur Yvette, France
来源
CRYOSPHERE | 2021年 / 15卷 / 02期
基金
欧盟地平线“2020”;
关键词
REGIONAL CLIMATE; CMIP5; MODELS; PINE ISLAND; PRECIPITATION; GREENLAND; TRENDS; TEMPERATURE; PROJECTIONS; RESOLUTION; MELTWATER;
D O I
10.5194/tc-15-571-2021
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
We present projections of West Antarctic surface mass balance (SMB) and surface melt to 2080-2100 under the RCP8.5 scenario and based on a regional model at 10 km resolution. Our projections are built by adding a CMIP5 (Coupled Model Intercomparison Project Phase 5) multi-model-mean seasonal climate-change anomaly to the present-day model boundary conditions. Using an anomaly has the advantage to reduce CMIP5 model biases, and a perfect-model test reveals that our approach captures most characteristics of future changes despite a 16 %-17 % underestimation of projected SMB and melt rates. SMB over the grounded ice sheet in the sector between Getz and Abbot increases from 336 Gt yr(-1) in 1989-2009 to 455 Gt yr(-1) in 2080-2100, which would reduce the global sea level changing rate by 0.33 mm yr(-1). Snowfall indeed increases by 7.4 % degrees C-1 to 8.9 % degrees C-1 of near-surface warming due to increasing saturation water vapour pressure in warmer conditions, reduced sea-ice concentrations, and more marine air intrusion. Ice-shelf surface melt rates increase by an order of magnitude in the 21st century mostly due to higher downward radiation from increased humidity and to reduced albedo in the presence of melting. There is a net production of surface liquid water over eastern ice shelves (Abbot, Cosgrove, and Pine Island) but not over western ice shelves (Thwaites, Crosson, Dotson, and Getz). This is explained by the evolution of the melt-to-snowfall ratio: below a threshold of 0.60 to 0.85 in our simulations, firn air is not entirely depleted by melt water, while entire depletion and net production of surface liquid water occur for higher ratios. This suggests that western ice shelves might remain unaffected by hydrofracturing for more than a century under RCP8.5, while eastern ice shelves have a high potential for hydrofracturing before the end of this century.
引用
收藏
页码:571 / 593
页数:23
相关论文
共 50 条
  • [1] Recent ice dynamic and surface mass balance of Union Glacier in the West Antarctic Ice Sheet
    Rivera, A.
    Zamora, R.
    Uribe, J. A.
    Jana, R.
    Oberreuter, J.
    CRYOSPHERE, 2014, 8 (04): : 1445 - 1456
  • [2] Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet
    Kittel, Christoph
    Amory, Charles
    Agosta, Cecile
    Jourdain, Nicolas C.
    Hofer, Stefan
    Delhasse, Alison
    Doutreloup, Sebastien
    Huot, Pierre-Vincent
    Lang, Charlotte
    Fichefet, Thierry
    Fettweis, Xavier
    CRYOSPHERE, 2021, 15 (03): : 1215 - 1236
  • [3] Stabilizing the West Antarctic Ice Sheet by surface mass deposition
    Feldmann, Johannes
    Levermann, Anders
    Mengel, Matthias
    SCIENCE ADVANCES, 2019, 5 (07)
  • [4] Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica
    Donat-Magnin, Marion
    Jourdain, Nicolas J.
    Gallee, Hubert
    Amory, Charles
    Kittel, Christoph
    Fettweis, Xavier
    Wille, Jonathan D.
    Favier, Vincent
    Drira, Amine
    Agosta, Cecile
    CRYOSPHERE, 2020, 14 (01): : 229 - 249
  • [5] Recent variations in surface mass balance of the Antarctic Peninsula ice sheet
    Morris, EM
    Mulvaney, R
    JOURNAL OF GLACIOLOGY, 2004, 50 (169) : 257 - 267
  • [6] Antarctic surface hydrology and impacts on ice-sheet mass balance
    Bell, Robin E.
    Banwell, Alison F.
    Trusel, Luke D.
    Kingslake, Jonathan
    NATURE CLIMATE CHANGE, 2018, 8 (12) : 1044 - 1052
  • [7] Antarctic surface hydrology and impacts on ice-sheet mass balance
    Robin E. Bell
    Alison F. Banwell
    Luke D. Trusel
    Jonathan Kingslake
    Nature Climate Change, 2018, 8 : 1044 - 1052
  • [8] The Impact of the Amundsen Sea Freshwater Balance on Ocean Melting of the West Antarctic Ice Sheet
    Bett, David T.
    Holland, Paul R.
    Garabato, Alberto C. Naveira
    Jenkins, Adrian
    Dutrieux, Pierre
    Kimura, Satoshi
    Fleming, Andrew
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (09)
  • [9] Future projections of the Greenland ice sheet energy balance driving the surface melt
    Franco, B.
    Fettweis, X.
    Erpicum, M.
    CRYOSPHERE, 2013, 7 (01): : 1 - 18
  • [10] Below-surface ice melt on the coastal Antarctic ice sheet
    Liston, GE
    Winther, JG
    Bruland, O
    Elvehoy, H
    Sand, K
    JOURNAL OF GLACIOLOGY, 1999, 45 (150) : 273 - 285