Materials Design On-the-Fly

被引:19
作者
Cerqueira, Tiago F. T. [1 ,2 ,3 ]
Sarmiento-Perez, Rafael [1 ,2 ,3 ]
Amsler, Maximilian [4 ]
Nogueira, F. [5 ]
Botti, Silvana [1 ,2 ,3 ]
Marques, Miguel A. L. [3 ,6 ]
机构
[1] Univ Jena, Inst Festkorpertheorie & Opt, D-07743 Jena, Germany
[2] European Theoret Spect Facil, D-07743 Jena, Germany
[3] Univ Lyon 1, CNRS, Inst Lumiere Matiere, UMR5306, F-69622 Villeurbanne, France
[4] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[5] Univ Coimbra, Dept Fis, Ctr Fis Computac, P-3004516 Coimbra, Portugal
[6] Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany
基金
瑞士国家科学基金会;
关键词
SEARCH; TRANSITION; CHALLENGES; MOLECULES;
D O I
10.1021/acs.jctc.5b00212
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dream of any solid-state theorist is to be able to predict new materials with tailored properties from scratch, i.e., without any input from experiment. Over the past decades, we have steadily approached this goal. Recent developments in the field of high-throughput calculations focused on finding the best material for specific applications. However, a key input for these techniques still had to be obtained experimentally, namely, the crystal structure of the materials. Here, we give a step further and show that one can indeed optimize material properties using as a single starting point the knowledge of the periodic table and the fundamental laws of quantum mechanics. This is done by combining state-of-the-art methods of global structure prediction that allow us to obtain the groundstate crystal structure of arbitrary materials, with an evolutionary algorithm that optimizes the chemical composition for the desired property. As a first showcase demonstration of our method, we perform an unbiased search for superhard materials and for transparent conductors. We stress that our method is completely general and can be used to optimize any property (or combination of properties) that can be calculated in a computer.
引用
收藏
页码:3955 / 3960
页数:6
相关论文
共 55 条
[1]   Conducting Boron Sheets Formed by the Reconstruction of the α-Boron (111) Surface [J].
Amsler, Maximilian ;
Botti, Silvana ;
Marques, Miguel A. L. ;
Goedecker, Stefan .
PHYSICAL REVIEW LETTERS, 2013, 111 (13)
[2]   Crystal Structure of Cold Compressed Graphite [J].
Amsler, Maximilian ;
Flores-Livas, Jose A. ;
Lehtovaara, Lauri ;
Balima, Felix ;
Ghasemi, S. Alireza ;
Machon, Denis ;
Pailhes, Stephane ;
Willand, Alexander ;
Caliste, Damien ;
Botti, Silvana ;
San Miguel, Alfonso ;
Goedecker, Stefan ;
Marques, Miguel A. L. .
PHYSICAL REVIEW LETTERS, 2012, 108 (06)
[3]   Crystal structure prediction using the minima hopping method [J].
Amsler, Maximilian ;
Goedecker, Stefan .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (22)
[4]  
[Anonymous], 1989, Density Functional Theoryof Atoms and Molecules
[5]  
[Anonymous], 2011, Modern methods of crystal prediction, DOI DOI 10.1002/9783527632831
[6]   Exploring Chemical Space with the Alchemical Derivatives [J].
Balawender, Robert ;
Welearegay, Meressa A. ;
Lesiuk, Michal ;
De Proft, Frank ;
Geerlings, Paul .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (12) :5327-5340
[7]   New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design [J].
Belsky, A ;
Hellenbrandt, M ;
Karen, VL ;
Luksch, P .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 :364-369
[8]   Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling [J].
Carrete, Jesus ;
Li, Wu ;
Mingo, Natalio ;
Wang, Shidong ;
Curtarolo, Stefano .
PHYSICAL REVIEW X, 2014, 4 (01)
[9]   Opportunities and challenges for first-principles materials design and applications to Li battery materials [J].
Ceder, Gerbrand .
MRS BULLETIN, 2010, 35 (09) :693-701
[10]  
Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/NMAT3568, 10.1038/nmat3568]