Pore network modeling of two-phase flow in a liquid-(disconnected) gas system

被引:14
|
作者
Bravo, Maria C. [1 ]
Araujo, Mariela
Lago, Marcelo E.
机构
[1] Florida Int Univ, Appl Res Ctr, Miami, FL 33174 USA
[2] Cent Univ Venezuela, Fac Ciencias, Escuela Fis, Caracas 1070A, Venezuela
[3] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England
[4] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA
关键词
two-phase flow; porous media; viscous coupling; relative permeability; pore network modeling; bubbles;
D O I
10.1016/j.physa.2006.08.041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The appropriate description of two-phase flow in some systems requires a detailed analysis of the fundamental equations of flow and transport including momentum transfer between fluid phases. In the particular case of two-phase flow of oil and gas through porous media, when the gas phase is present as disconnected bubbles, there are inconsistencies in calculated flow properties derived by using the conventional Darcean description. In a two-phase system, the motion of one fluid phase may induce significant changes in the mobility of the second phase, as known from the generalized transport equations derived by Whitaker and Kalaydjian. The relevance of such coupling coefficients with respect to the conventional relative permeability term in two-phase Darcean flow is evaluated in this work for an oil-(disconnected) gas system. The study was performed using a new Pore Network Simulator specially designed for this case. Results considering both, Darcy's equation and generalized flow equations suggest that the four transport coefficients (effective permeabilities and coupling coefficients) are needed for a proper description of the macroscopic flow in a liquid-disconnected gas system. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] A new formulation for pore-network modeling of two-phase flow
    Raoof, A.
    Hassanizadeh, S. M.
    WATER RESOURCES RESEARCH, 2012, 48
  • [2] Dynamic Modeling of Two-Phase Gas/Liquid Flow in Pipelines
    Meziou, Amine
    Khan, Zurwa
    Wassar, Taoufik
    Franchek, Matthew A.
    Tafreshi, Reza
    Grigoriadis, Karolos
    SPE JOURNAL, 2019, 24 (05): : 2239 - 2263
  • [3] PORE SCALE MODELING OF TWO-PHASE FLOW
    Shabro, Vahid
    Prodanovic, Masa
    Arns, Christoph H.
    Bryant, Steven L.
    Torres-Verdin, Carlos
    Knackstedt, Mark A.
    PROCEEDINGS OF THE XVIII INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES (CMWR 2010), 2010, : 1068 - 1075
  • [4] The numerical modeling of gas liquid two-phase flow in Laval nozzle
    Wang, Hongyue
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND ENGINEERING INNOVATION, 2015, 12 : 872 - 876
  • [5] Slug Flow Hydrodynamics Modeling for Gas-Liquid Two-Phase Flow in a Pipe
    Liu, Huishu
    Duan, Jimiao
    Gu, Kecheng
    Li, Jiang
    Yan, Hao
    Wang, Jian
    Li, Changjun
    ENERGIES, 2022, 15 (02)
  • [6] Numerical modeling of liquid-gas two-phase flow and heat transfer in reconstructed porous media at pore scale
    Liu, Zhenyu
    Wu, Huiying
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (28) : 12285 - 12292
  • [7] Numerical Modeling of pipes conveying gas-liquid two-phase flow
    Khudayarov, Bakhtiyar
    Komilova, Kholidakhon
    Turaev, Fozilzhon
    XXII INTERNATIONAL SCIENTIFIC CONFERENCE: CONSTRUCTION THE FORMATION OF LIVING ENVIRONMENT (FORM-2019), 2019, 97
  • [8] GAS-LIQUID TWO-PHASE TRANSIENT SLUG FLOW MODELING.
    Ozawa, Mamoru
    Hamaguchi, Hachiro
    Sakaguchi, Tadashi
    1600,
  • [9] Effect of Gravity on Modeling for Gas-liquid Two-phase Flow in Pipe
    Takamasa, Tomoji
    Hazuku, Tatsuya
    INTERNATIONAL JOURNAL OF MICROGRAVITY SCIENCE AND APPLICATION, 2009, 26 (03): : 218 - 225
  • [10] Numerical simulation of gas-liquid two-phase flow in gas lift system
    Zuo Juan-Li
    Yang Hong
    Wei Bing-Qian
    Hou Jing-Ming
    Zhang Kai
    ACTA PHYSICA SINICA, 2020, 69 (06)