A Novel Profit Maximizing Metric for Measuring Classification Performance of Customer Churn Prediction Models

被引:103
|
作者
Verbraken, Thomas [1 ]
Verbeke, Wouter [2 ]
Baesens, Bart [1 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Decis Sci & Informat Management, B-3000 Louvain, Belgium
[2] Univ Edinburgh, Sch Business, Edinburgh EH8 9JS, Midlothian, Scotland
[3] Univ Southampton, Sch Management, Southampton SO17 1BJ, Hants, England
关键词
Data mining; classification; performance measures; DECISION TABLES; NETWORKS; ACCURACY; AREA;
D O I
10.1109/TKDE.2012.50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The interest for data mining techniques has increased tremendously during the past decades, and numerous classification techniques have been applied in a wide range of business applications. Hence, the need for adequate performance measures has become more important than ever. In this paper, a cost-benefit analysis framework is formalized in order to define performance measures which are aligned with the main objectives of the end users, i.e., profit maximization. A new performance measure is defined, the expected maximum profit criterion. This general framework is then applied to the customer churn problem with its particular cost-benefit structure. The advantage of this approach is that it assists companies with selecting the classifier which maximizes the profit. Moreover, it aids with the practical implementation in the sense that it provides guidance about the fraction of the customer base to be included in the retention campaign.
引用
收藏
页码:961 / 973
页数:13
相关论文
共 50 条
  • [1] Profit Maximizing Logistic Regression Modeling for Customer Churn Prediction
    Stripling, Eugen
    vanden Broucke, Seppe
    Antonio, Katrien
    Baesens, Bart
    Snoeck, Monique
    PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (IEEE DSAA 2015), 2015, : 851 - 860
  • [2] An analysis on classification models for customer churn prediction
    Mouli, Kathi Chandra
    Raghavendran, Ch. V.
    Bharadwaj, V. Y.
    Vybhavi, G. Y.
    Sravani, C.
    Vafaeva, Khristina Maksudovna
    Deorari, Rajesh
    Hussein, Laith
    COGENT ENGINEERING, 2024, 11 (01):
  • [3] Profit maximizing logistic model for customer churn prediction using genetic algorithms
    Stripling, Eugen
    vanden Broucke, Seppe
    Antonio, Katrien
    Baesens, Bart
    Snoeck, Monique
    SWARM AND EVOLUTIONARY COMPUTATION, 2018, 40 : 116 - 130
  • [4] Customer Churn Prediction by Classification Models in Machine Learning
    Zhao, Heng
    Zuo, Xumin
    Xie, Yuanyuan
    2022 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE 2022), 2022, : 399 - 407
  • [5] Profit optimizing customer churn prediction with Bayesian network classifiers
    Verbraken, Thomas
    Verbeke, Wouter
    Baesens, Bart
    INTELLIGENT DATA ANALYSIS, 2014, 18 (01) : 3 - 24
  • [6] Empirical analysis of tree-based classification models for customer churn prediction
    Usman-Hamza, Fatima E.
    Balogun, Abdullateef O.
    Nasiru, Salahdeen K.
    Capretz, Luiz Fernando
    Mojeed, Hammed A.
    Salihu, Shakirat A.
    Akintola, Abimbola G.
    Mabayoje, Modinat A.
    Awotunde, Joseph B.
    SCIENTIFIC AFRICAN, 2024, 23
  • [7] A Novel Approach to Customer Churn Prediction in Telecom
    Senthilselvi, A.
    Kanishk, V
    Vineesh, K.
    Raj, Praveen A.
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [8] Performance Evaluation of Various Classification Techniques for Customer Churn Prediction in E-commerce
    Baghla, Seema
    Gupta, Gaurav
    MICROPROCESSORS AND MICROSYSTEMS, 2022, 94
  • [9] An exploration of Customer Churn prediction models of Telecommunication Orbit
    Swetha, P.
    Usha, S.
    INTERNATIONAL CONFERENCE ON SUSTAINABLE ENGINEERING AND TECHNOLOGY (ICONSET 2018), 2018, 2039
  • [10] Intelligent Decision Forest Models for Customer Churn Prediction
    Usman-Hamza, Fatima Enehezei
    Balogun, Abdullateef Oluwagbemiga
    Capretz, Luiz Fernando
    Mojeed, Hammed Adeleye
    Mahamad, Saipunidzam
    Salihu, Shakirat Aderonke
    Akintola, Abimbola Ganiyat
    Basri, Shuib
    Amosa, Ramoni Tirimisiyu
    Salahdeen, Nasiru Kehinde
    APPLIED SCIENCES-BASEL, 2022, 12 (16):